Baryonic Spectral Functions above the Deconfinement Phase Transition

Masayuki ASAKAWA

Department of Physics, Osaka University

July 2008

QCD Phase Diagram LHC RHIC QGP (quark-gluon plasma) **CEP(critical end point)** \bigcirc 160-190 MeV crossover 100MeV ~ 10¹² K 1st order \mathbf{O} order? Hadron Phase $(\bullet \bullet)$ chiral symmetry breaking **CSC** (color superconductivity) confinement 5-10p₀ μ_{B}

Importance of Understanding Hadrons @Finite T

Success of Recombination @RHIC

■
$$v_2^M(p_T^M)$$
 : $v_2^B(p_T^B) \sim 2$: 3 for p_T^M : $p_T^B = 2$: 3

$$\frac{dN_i}{dyd\varphi} \left(\frac{dN_i}{dyd\varphi d^2 p_T} \right) = N_{i0} \left(1 + 2v_1 \cos(\varphi - \varphi_0) + 2v_2 \cos 2(\varphi - \varphi_0) + \cdots \right)$$

Constituent Quark Number Scaling

■ $v_2^M(p_T^M)$: $v_2^B(p_T^B) \sim 2$: 3 for p_T^M : $p_T^B = 2$: 3

Partons are flowing and Partons recombine to make mesons and baryons

Assumption

Evidence of Deconfinement

All hadrons are created at hadronization simultaneously

M. Asakawa (Osaka University)

Hadrons above T_c?

Hadrons above T_c

- No a priori reason that no hadrons exist above T_c
- QGP looks like strongly interacting system (low viscosity...etc.)

Definition of Spectral Function (SPF)

$$\frac{\rho_{\mu\nu}(k_0,\vec{k})}{(2\pi)^3} = \sum_{n,m} \frac{e^{-(E_n - \mu N_n)/T}}{Z} \langle n | J_{\mu}(0) | m \rangle \langle m | J_{\nu}(0) | n \rangle (1 \mp e^{-P_{mn}^0/T}) \delta^4(k - P_{mn}) - (+) : \text{Boson(Fermion)}$$

$$J_{\mu}(0): \text{ A Heisenberg Operator with some quantum } \#$$

$$|n\rangle \quad : \text{ Eigenstate with 4-momentum } P_n^{\mu}$$

$$P_{mn} = P_m - P_n$$

SPF is peaked at particle mass and takes a broad form for a resonance

M. Asakawa (Osaka University)

J/ψ non-dissociation above T_c

Baryon Operators

Nucleon current

 $J_{N}(x) = \varepsilon_{abc} \left[s \left(u_{a}(x)Cd_{b}(x) \right) \gamma_{5}u_{c}(x) + t \left(u_{a}(x)C\gamma_{5}d_{b}(x) \right) u_{c}(x) \right]$ s = -t = 1 loffe current

• On the lattice, used s = 0, t = 1, u(x) = d(x) = q(x), $J_N(x) \rightarrow J(x)$

Euclidean correlation function at zero momentum

$$D(\tau, \vec{0}) = \int d^3 x \left\langle J(\tau, \vec{x}) \overline{J}(0, \vec{0}) \right\rangle$$
$$D(\tau, \vec{0}) = \int_{-\infty}^{\infty} K(\tau, \omega) \rho(\omega) d\omega$$
$$K(\tau, \omega) = \frac{\exp\left(\frac{1}{2} - \tau T\right) \frac{\omega}{T}}{\exp\left(\frac{\omega}{2T}\right) + \exp\left(-\frac{\omega}{2T}\right)}$$

M. Asakawa (Osaka University)

Spectral Functions for Fermionic Operators

Thus, need to and can carry out MEM analysis in [- ω_{max} , ω_{max}]

In the following, we analyze $\rho(\omega) \equiv \frac{\rho_+(\omega)}{|\omega^5|}$

Lattice Parameters

1. Lattice Sizes $32^3 * 46 \quad (T = 1.62T_c)$ $54 \quad (T = 1.38T_c)$ $72 \quad (T = 1.04T_c)$ $80 \quad (T = 0.93T_c)$ $96 \quad (T = 0.78T_c)$ 2. $\beta = 7.0, \quad \xi_0 = 3.5$ $\xi = a_0/a_\tau = 4.0$ (anisotropic)

- 3. $a_{\tau} = 9.75 * 10^{-3} \text{ fm}$ $L_{\sigma} = 1.25 \text{ fm}$
- 4. Standard Plaquette Action

- 5. Wilson Fermion
- 6. Heatbath : Overrelaxation = 1 : 4

1000 sweeps between measurements

- 7. Quenched Approximation
- 8. Gauge Unfixed
- 9. **p** = **0** Projection
- 10. Machine: CP-PACS

Analysis Details

Default Model

At zero momentum,

$$\rho_{+}(\omega) = \rho_{-}(\omega) = \frac{1}{(2\pi)^{4}} \frac{5}{128} \operatorname{sgn}(\omega) \omega^{5}$$

Espriu, Pascual, Tarrach, 1983

Relation between lattice and continuum currents

$$J^{\text{LAT}}(\tau, \vec{x}) = a_{\tau}^{3/4} a_{\sigma}^{15/4} \left(\frac{1}{2\sqrt{\kappa_{\tau}\kappa_{\sigma}}}\right)^{3/2} \frac{1}{Z_{o}} J^{\text{CON}}(\tau, \vec{x})$$

• In the following, lattice spectral functions are presented

• $Z_o = 1$ is assumed

■ $\omega_{max} = 45 \text{ GeV} \sim 3\pi/a_{\sigma}$ (3 quarks)

M. Asakawa (Osaka University)

Stat. and Syst. Error Analyses in MEM

Generally,

The Larger the Number of Data Points and the Lower the Noise Level

The closer the result is to the original image

Need to do the following:

Below T_c: Light Baryon

Below T_c: Charm Baryon

Above T_c: Light Baryon

@Higher T

M. Asakawa (Osaka University)

Above T_c: Charm Baryon

M. Asakawa (Osaka University)

@Higher T

Statistical Analysis: Charm Baryon

Peak near zero is statistically significant

M. Asakawa (Osaka University)

Origin of Near Zero Structure

Scattering Term

Scattering term at $\vec{p} = \vec{0}$ a.k.a. Landau damping

M. Asakawa (Osaka University)

Scattering Term (two body case)

Scattering Term (three body case)

$$\begin{array}{|c|c|}\hline T \ll m_1, m_2, m_3 \\ |\vec{p}_1| \sim 0 \end{array}$$

Origin of Symmetric Structure

Wilson Doublers

Mass of Wilson Doublers with r = 1 in the continuum limit

 $m + \frac{2n_{\pi}}{a}$ n_{π} : numer of momentum components equal to π (1,2,3)

- If quark mass can be neglected:
 - Masses of Baryons with Doublers
 - Scattering term peaks with quark-doubler, doubler-doubler pairs

Approximately equally separated and symmetric in $\boldsymbol{\omega}$

M. Asakawa (Osaka University)

Summary

Baryons disappear just above T_c

A sharp peak with negative parity near ω=0 is observed in baryonic SPF above T_c

This can be due to diquark-quark scattering term and imply the existence of diquark correlation above $T_{\rm c}$

Diquarks disappear below meson disapperance temperature

Direct measurement of SPF diquark operators with MEM is desired

To understand doubler contribution, calculation with finer lattice is desired

M. Asakawa (Osaka University)

Microscopic Understanding of QGP

Importance of Microscopic Properties of matter, in addition to Bulk Properties

In condensed matter physics, common to start from one particle states, then proceed to two, three, ... particle states (correlations)

Spectral Functions:

One Quark	—— need to fix gauge
-----------	----------------------

- Two Quarks
 - ✓ mesons
 - ✓ color singlet
 - octet need to fix gauge
 - > diquarks need to fix gauge
- Three Quarks
 - ✓ baryons

Meson-Baryon Universality

Partons are flowing and Partons recombine to make mesons and baryons

Evidence of Deconfinement !

Statistical Analysis below T_c

Statistical Analysis below T_c

Negative parity: a possible interpretation

M. Asakawa (Osaka University)