QCD Thermodynamics with Domain Wall Fermions

Michael Cheng for the RBC and HotQCD Collaborations

Lattice 2008, William and Mary Williamsburg, VA, July 14-19, 2008

Outline

- Domain Wall Fermion (DWF) Thermodynamics
- **RBC Collaboration: DWF Thermo with L_s=32**
 - Residual chiral symmetry breaking.
 - Chiral condensate and susceptibility
 - Lattice scale and hadron spectrum.
 - Results for T_c
- HotQCD Collaboration: DWF Thermo with L_s=96
 - Preliminary results for chiral condensate and Wilson line
- Conclusions/Outlook

QCD Thermodynamics

- Goals: Understand QCD at finite temperature and density.
- Current calculations with $\mu = 0$.
- Important Quantities:
 - Pseudo-critical temperature: T_c
 - Equation of State (EoS): p(T), ε(T), s(T)
- EoS applicable in hydrodynamic modeling of heavy ion collisions.
- Learn something about QGP in early universe.

Why Domain Wall Fermions?

- Many recent, high-precision thermodynamic lattice QCD calculations done with staggered fermions
- Staggered fermions 16 "rooted", non-degnerate pions instead of 3 natural pions (DeTar).
- Do the heavier pions affect thermodynamics?
- DWF have correct chiral symmetry, with residual breaking parameterized by m_{res}.
- DWF more expensive than staggered.
- Previous studies of QCD thermo with DWF at N_t=4 Lattices too coarse for DWF (RBC 2000).

RBC $L_s = 32$ DWF Project

- Goal: Explore critical region with DWF N_t=8
- Lattices fine enough that DWF formulation is working well.
- 16³x8 lattice volumes, lwasaki gauge action
- L_s=32 to control residual chiral symmetry breaking
- 2+1 flavors of dynamical quarks, generated using Rational Hybrid Monte Carlo (RHMC)
- m_la = .003, m_sa = .037, m_{res}a(esimated) = .008
- Light quarks about ¼ strange quark mass

RBC $L_s = 32$ DWF Project

- 11 ensembles at different gauge couplings: 1.95 < β < 2.14, corresponding to 1.0 Gev < a⁻¹ < 1.8 GeV
- $\Delta\beta = .01 \rightarrow$ approximately 3% change in scale.
- 500 2500 trajectories per ensemble.
- Transition region: $2.00 < \beta < 2.0625$, 6 ensembles with spacing $\Delta\beta = .0125$. 2000+ trajectories per ensemble.
- Measure chiral condensate, Wilson line.
- Locate β_c using susceptibility peaks.
- Zero temperature measurements at β = 2.025 to set lattice scale.

Residual Chiral Symmetry Breaking

- m_{res} increases exponentially with decreasing β for $L_s=32$
- Total quark mass is not fixed with $\beta \rightarrow$ increases as we go to coarser lattices

• m_{res} dominated by non-perturbative lattice dislocations, suppressed by only 1/L_s

Lattice 2008

Chiral Condensate

Lattice 2008

Chiral Susceptibility

Lattice 2008

Chiral condensate vs. L_s

• At large L_s, m_{res} dominated by small lattice dislocations.

 \bullet Chiral condensate does not change very much at large $\rm L_{s}$

Conclusion → Chiral condensate is not affected by contributions from localized modes.

Lattice 2008

Susceptibility vs. L_s

• Changing L_s to 64 (reducing m_{res} by factor of 2) increases chiral susceptibility

• Changing L_s to 96, but keeping (m_l+m_{res}) fixed has little effect on susceptibility.

• Conclusion \rightarrow Susceptibility seems to be function of total light quark mass (m_l+m_{res}).

Scale Setting

- 16³ x 32 lattice volume at β = 2.025, near susceptibility peak of $\beta_c \approx 2.04$
- Scale setting using Sommer parameter: $r_0 = 0.469(7)$ fm. (Easy comparison with other T_c calculations, not extremely sensitive to quark mass)
- At $\beta = 2.025$, $r_0/a = 3.08(9)$ corresponds to $a^{-1} = 1.3$ GeV
- At $\beta = \beta_c$, $r_0/a = 3.25(18)$.
- Inflated error bar from uncertainty in β_c , chiral extrapolation, finite volume effects.
- Corresponds to $T_c = 170 \text{ MeV}$.
- Hadron spectrum also measured:
- Pion: m_π = 300 MeV Kaon: m_κ = 490 MeV
- Setting scale using m_{o} gives rough (10%) agreement.

T_c for $L_s = 32$

- Best estimate from $L_s = 32$ calculation, $T_c = 170(10)(17)$ MeV
- First error from estimate of scale at β_c .
- Estimate of second error from lack of chiral and continuum extrapolation. Use staggered calculation as guide \rightarrow chiral extrapolation should be similar, continuum \rightarrow ???
- Lower than some recent staggered results, large error bar
- Several major caveats:
 - Light quark mass not constant in transition region. Estimated effect: shifts T_c lower by 3%, but error is uncontrolled.
 - Total light quark mass dominated by m_{res}, especially at strong coupling. Could this cause adverse effects?
 - Small aspect ratio (16³x8)
 - No chiral or continuum extrapolation possible as yet.
- Exploratory, "proof of principle" calculation.

HotQCD Ls=96 Project

- HotQCD: Collaborations of collaborations involving RBC-Bielefeld, MILC, LLNL, LANL.
- Goals: Lattice thermodynamics (T_c, EoS) using p4, asqtad (talk by R. Gupta) and DWF actions.
- DWF with $L_s = 96$
- Addresses *some* of caveats from Ls = 32 calculation:
 - Suppress m_{res} by factor of 3, so total quark mass is not dominated by m_{res}.
 - Quark masses adjusted so that $(m_l + m_{res})a$ is constant at each value of β . Light mass is 15% of strange mass.
- 6 values of $\beta \rightarrow 1.9875 < \beta < 2.05 \rightarrow$ more to be added.
- Currently 1000+ trajectories at each β .
- Expect β_c at stronger coupling compared to $L_s=32$.

Chiral Condensate

Wilson line

Lattice 2008

Conclusions/Outlook

- RBC calculation with L_s=32 (complete) → "proof of principle" for DWF thermodynamics.
- $T_c = 170(10)(17)$ MeV, but with several caveats.
- Improved HotQCD calculation with L_s = 96 (in progress) → Total light quark mass constant in transition region, light quark mass 15% of strange quark mass.
- Critical region seems to shift to stronger coupling with $L_s=96$ compared to $L_s=32$, but β_c not determined accurately for $L_s=96$. Evidence of shoulder? (Karsch)
- L_s = 96 is an expensive way to suppress m_{res} exploring other alternatives to more efficiently do this: "Vranas Auxiliary Determinant DWF" (talk by D. Renfrew)