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Inverting the Dirac Operator

• Required to invert the Dirac operator for QCD calculation

– Determinant: O(1) inversions, continuously changing U

– Observables: O(10)−O(1000) inversions, constant U

• Direct solve infeasible

• Krylov solvers typically used

– Using CG on D†Dx = D†b
– e.g., BiCGstab on Dx = b

• Condition number ∝ 1/m (1/m2)

– Critical slowing down in solver
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Inverting the Dirac Operator: Recent Progress

• Eigenvector deflation strategies (Morgan/Wilcox, Orginos/Stathopoulos)

– Deflate Dirac operator by its low e-vectors

– With sufficient e-vectors, critical slowing down gone

– O(N2) scaling in number of e-vectors required

– Large overhead finding e-vectors ⇒ multiple rhs problems

• Local mode deflation (Lüscher)

– Deflate the Dirac operator only locally over blocks

– E-vectors locally co-linear (“Local coherence”)

– O(N)/O(N logN) cost

– Small setup overhead ⇒ suitable for all problems

• Adaptive multigrid (Brannick/Brower/Clark/Osborn/Rebbi)

– Preconditioner for Dirac normal equations in 2d

– Critical slowing down gone

– How about 4d?
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Intro to Multigrid: Failure of stationary solvers

• Iterative solvers (relaxation) effective on high frequency error

• Minimal effect on low frequency error

• Example:

– Free Laplace operator in 2d

– Ax = 0, x0 random

– Gauss-Seidel relaxation

– Plot error = x
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Intro to Multigrid: Coarse Grid Representation I

• Low frequency error components slow down solver

• Low frequency modes are smooth ⇒ represent on coarse grid

• Fine low frequency → Coarse high frequency

⇒ Relax system on coarse grid

• Prolongate coarse correction to fine grid

• 2 grid scheme much better than relaxation

• Iterate until exact solve is possible (V-cycle)
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Intro to Multigrid: Coarse Grid Representation II

• Define restriction operator R

• Define prolongation operator P

• Notice R = P †

• Define coarse grid operator Ac = P †AP (Galerkin prescription)

– Equivalent to rediscretization in free theory
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Intro to Multigrid: Geometric MG and QCD

• Classical geometric multigrid

– O(N logN) / O(N) work

– Removes critical slowing down

• Gauge field U is not geometrically smooth

– Dirac operator low modes oscillatory

– Geometric MG fails

• 20 years of failures applying MG to QCD

• MG requires low modes preserved in coarse space

– (1− PP †)ψ0 = 0

• Adaptivity required for gauge fields
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Adaptive Smooth Aggregation MG (αSA) (Brezina et al)

• Adaptively use (s)low modes to define required V-cycle

• Initial Algorithm setup:

1. Relax on homogenous problem Ax = 0, random x0
⇒ resulting error vector is a representation of slow modes

2. Cut vector x into subsets to be aggregated (blocked)

3. This defines the prolongator such that (1− PP †)x = 0

4. Define coarse grid operator Ac = P †AP
5. Relax on coarse grid Acxc = 0, xc0 = P †x, goto 2.

• This defines initial V-Cycle
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Adaptive Smooth Aggregation MG (αSA) (Brezina et al)

• In general require more a single vector

• Now repeat setup process replacing relaxation with V-cycle

– Previously found errors components quickly reduced

– Error vector rich in new error components

• Augment V-Cycle to preserve additional vector space

– Cut vectors x1, x2 into blocks

– Orthonormalize blocks to define augmented prolongator

– Define new coarse grid operator

– Each vector corresponds to an extra dof per coarse site

• Add more vectors until satisfactory solver found

• Setup cost depends on number of vectors required
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Example Setup: Gauge Laplacian
2d 128× 128 lattice, m = 10−6
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QCD Adaptive Multigrid

• αSA designed for problems without an underlying geometry

– Uses algebraic “strength of connection” to block system

• QCD has regular geometric lattice with unitary connections

– Use regular geometric blocking strategy (e.g.,4d ×Ns ×Nc)

– Coarse operator “looks” like a Dirac operator

• Dirac operator is not Hermitian Positive Definite

– Multigrid convergence proof requires HPD operator

• Use normal equations ⇒ A = D†D
– Critical slowing down gone in 2d (PRL 100:041601)

– Coarse grid operator P †(D†D)P not nearest neighbour

– D†D has squared condition number compared to D

– More vectors to capture null space, cost ∝ N2
v

– Coarse operator very expensive in 4d
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Multigrid on D

• Eigenvector decomposition of D = |ψλ〉λ〈ψ̂λ|
• Consider deflation: bi-orthogonality requires left-right

projection

P =
(
1− |ψλ〉

1

λ
〈ψ̂λ|

)
=

(
1− |ψλ〉〈ψ̂λ′|D|ψλ〉

−1〈ψ̂λ′|
)
=

(
1− P (RDP )−1R

)
• Prolongation from right vectors, restriction from left vectors

• Left and right eigenvectors related through γ5: ψ̂λ = γ5ψλ∗

R = P †γ5 Dc = P †γ5DP

• Leave chirality intact

– [γ5, P ] = 0

– γ5 cancels out of correction

• Coarse grid operator defined as

– Dc retains γ5 Hermiticity

– Dc is positive real if D is
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2d Results

• 128× 128 lattice, β = 6,10, m̂ = 0.001− 0.5

• MG setup run at lightest mass only

• D†D-MG algorithm

– 4×4(×2) blocking, 3 levels, Nv = 8

– Under-relaxed MR relaxation

– Preconditioner for CG

• D-MG algorithm

– 4× 4 blocking, 3 levels, Nv = 4

– Under-relaxed MR relaxation

– Preconditioner for BiCGstab

• Results

– Critical slowing down virtually gone

– Weak dependence on β

– D-MG superior to D†D-MG
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4d Results

• Apply D-MG algorithm to full problem

• 163 × 32 lattice

– β = 6.0, mcrit = −0.8049

• Compare against CG, BiCGstab

• D-MG Algorithm

– 44(×3× 2) blocking, 3 levels

– Nv = 20, (c.f. Lüscher)

– Setup run at mcrit

– Under-relaxed MR smoother

– Preconditioner for GCR(50)
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4d Results

-0.81 -0.805 -0.8 -0.795 -0.79 -0.785 -0.78
mass

0

1000

2000

3000

4000

5000

6000

D
ir

ac
 O

pe
ra

to
r 

A
pp

lic
at

io
ns

BiCGstab
CG

22



4d Results

-0.81 -0.805 -0.8 -0.795 -0.79 -0.785 -0.78
mass

0

1000

2000

3000

4000

5000

6000

D
ir

ac
 O

pe
ra

to
r 

A
pp

lic
at

io
ns

BiCGstab
CG
MG-GCR

23



4d Results
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Adaptive MG vs. Deflation (PRELIMINARY)

• 163 × 64 anisotropic Wilson lattice

– β = 5.5

– mcrit = −0.4180

• Adaptive MG

– Nv = 20

• Eigen-vector deflation

– Nv = 240 (Orginos and Stathopoulos)

• Order of magnitude reduction in Nv

• Very similar näıve performance
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• Deflation actually ≈ ×2 faster but 10×Nv

• Expect MG to be increasingly competitive at large volumes
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Conclusions and Future Work

• Now have a variety of algorithms to tame critical slowing down

– Eigenvector deflation

– Local mode deflation

– Adaptive Multigrid

• These have different ranges of applicability

– All suitable for multiple rhs calculations

– Local mode deflation also suitable HMC (MG also?)

• Staggered fermions

– No problems expected here

– Ideal since very large lattices

• Chiral fermions (overlap, domain wall)

– Essentially a highly indefinite Wilson operator

– D-MG requires reformulation
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Local Mode Deflation vs. Multigrid

• MG is multiplicative cancellation

(PD−1
c P †)Dx = (PD−1

c P †)b

• Local mode deflation is additive cancellation

(1−DPD−1
c P †)Dx = (1−DPD−1

c P †)b

• Expect MG to require less accurate D−1
c solution

– Local mode deflation D−1
c accuracy 10−6

– MG D−1
c accuracy?
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