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Inverting the Dirac Operator

Required to invert the Dirac operator for QCD calculation
— Determinant: O(1) inversions, continuously changing U
— Observables: O(10) — O(1000) inversions, constant U

Direct solve infeasible

Krylov solvers typically used
— Using CG on DDz = Db
— e.g., BiCGstab on Dz =b

Condition number « 1/m (1/m?)
— Critical slowing down in solver



Inverting the Dirac Operator: Recent Progress

o Eigenvector deflation strategies (Morgan/Wilcox, Orginos/Stathopoulos)
— Deflate Dirac operator by its low e-vectors
— With sufficient e-vectors, critical slowing down gone
— O(N?) scaling in number of e-vectors required
— Large overhead finding e-vectors = multiple rhs problems

e Local mode deflation (Lischer)
— Deflate the Dirac operator only locally over blocks
— E-vectors locally co-linear (“Local coherence™)
— O(N)/O(N log N) cost
— Small setup overhead = suitable for all problems

e Adaptive multigrid (Brannick/Brower/Clark/Osborn/Rebbi)
— Preconditioner for Dirac normal equations in 2d
— Critical slowing down gone
— How about 4d7



Intro to Multigrid: Failure of stationary solvers

e Iterative solvers (relaxation) effective on high frequency error

e Minimal effect on low frequency error

e Example:
— Free Laplace operator in 2d
— Ax = 0, zg random
— Gauss-Seidel relaxation
— Plot error =«
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Intro to Multigrid: Coarse Grid Representation I

e Low frequency error components slow down solver
e Low frequency modes are smooth = represent on coarse grid
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e Fine low frequency — Coarse high frequency
= Relax system on coarse grid

e Prolongate coarse correction to fine grid

e 2 grid scheme much better than relaxation

e Iterate until exact solve is possible (V-cycle)
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Intro to Multigrid: Coarse Grid Representation II

Define restriction operator R
L L L ] L L ® h

® ® 2h

Define prolongation operator P

° / h
Ww ® 2h
Notice R = P

Define coarse grid operator A. = PTAP (Galerkin prescription)
— Equivalent to rediscretization in free theory



Intro to Multigrid: Geometric MG and QCD

Classical geometric multigrid

Free Mield
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— O(NlogN) / O(N) work

— Removes critical slowing down
Gauge field U is not geometrically smooth [

— Dirac operator low modes oscillatory T

— Geometric MG fails
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Adaptive Smooth Aggregation MG (aSA) (Brezina et al)

e Adaptively use (s)low modes to define required V-cycle

e Initial Algorithm setup:

1.

SINTIEN

Relax on homogenous problem Ax = 0, random xg
= resulting error vector is a representation of slow modes

. Cut vector x into subsets to be aggregated (blocked)
. This defines the prolongator such that (1 — PPz =0

Define coarse grid operator A. = PTAP
Relax on coarse grid Acz® =0, z§ = P'z, goto 2.

e [ his defines initial V-Cycle
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Adaptive Smooth Aggregation MG (aSA) (Brezina et al)

e In general require more a single vector

e Now repeat setup process replacing relaxation with V-cycle
— Previously found errors components quickly reduced
— Error vector rich in new error components

e Augment V-Cycle to preserve additional vector space
— Cut vectors xq1, x> into blocks
— Orthonormalize blocks to define augmented prolongator
— Define new coarse grid operator
— Each vector corresponds to an extra dof per coarse site

e Add more vectors until satisfactory solver found

e Setup cost depends on number of vectors required
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Example Setup: Gauge Laplacian
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QCD Adaptive Multigrid

aS A designed for problems without an underlying geometry
— Uses algebraic “strength of connection” to block system

QCD has regular geometric lattice with unitary connections
— Use regular geometric blocking strategy (e.g.,4% x Ng x N¢)
— Coarse operator “looks” like a Dirac operator

Dirac operator is not Hermitian Positive Definite
— Multigrid convergence proof requires HPD operator

Use normal equations = A = DD
— Critical slowing down gone in 2d (PRL 100:041601)
— Coarse grid operator PT(DTD)P not nearest neighbour
— DD has squared condition number compared to D
— More vectors to capture null space, cost « Nv2
— Coarse operator very expensive in 4d
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Multigrid on D

Eigenvector decomposition of D = |1y )\ (1), |
Consider deflation: bi-orthogonality requires left-right
projection

P o= (1- i)
= (1— [ (@yIDlen)"Lel) = (1 - P(RDP)'R)

Prolongation from right vectors, restriction from left vectors
Left and right eigenvectors related through ~vg5: ¥\ = 51,

R = Plys D. = PlyeDP
Leave chirality intact
— [vs, P =0
— 75 Ccancels out of correction
Coarse grid operator defined as
— D¢ retains vg5 Hermiticity
— D¢ is positive real if D is
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2d Results

128 x 128 lattice, 8 = 6,10, m = 0.001 — 0.5

MG setup run at lightest mass only

DTD-MG algorithm
— 4x4(x2) blocking, 3 levels, N, = 8
— Under-relaxed MR relaxation
— Preconditioner for CG

D-MG algorithm
— 4 x 4 blocking, 3 levels, N, =4
— Under-relaxed MR relaxation
— Preconditioner for BiCGstab

Results
— Critical slowing down virtually gone
— Weak dependence on (3
— D-MG superior to DTD-MG
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4d Results
Apply D-MG algorithm to full problem

163 x 32 lattice
— B8 =6.0, mg; = —0.8049

Compare against CG, BiCGstab

D-MG Algorithm
— 4%4(x3 x 2) blocking, 3 levels
— Ny = 20, (c.f. Luscher)
— Setup run at mgpi
— Under-relaxed MR smoother
— Preconditioner for GCR(50)



Dirac Operator Applications
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Dirac Operator Applications
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Adaptive MG vs. Deflation (PrRELIMINARY)

163 x 64 anisotropic Wilson lattice

— 3=55 000 —
— Mgy = —0.4180 ’ =20

3000 —

Adaptive MG
- va = 20

— . m,(setup)
Eigen-vector deflation
— Ny = 240 (Orginos and Stathopoulos)

Dirac operator applications
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Order of magnitude reduction in Ny 7 e

—%.43 -0.42 -0.41 -0.4

Very similar naive performance
Deflation actually ~ x2 faster but 10 x N,

Expect MG to be increasingly competitive at large volumes
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Conclusions and Future Work

Now have a variety of algorithms to tame critical slowing down
— Eigenvector deflation
— Local mode deflation
— Adaptive Multigrid

T hese have different ranges of applicability
— All suitable for multiple rhs calculations
— Local mode deflation also suitable HMC (MG also?)

Staggered fermions
— NoO problems expected here
— Ideal since very large lattices

Chiral fermions (overlap, domain wall)
— Essentially a highly indefinite Wilson operator
— D-MG requires reformulation
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Local Mode Deflation vs. Multigrid
e MG is multiplicative cancellation

(PD-'PYDz = (PD;-1PM)b

e Local mode deflation is additive cancellation

(1—-DPD;'PYDz = (1 — DPD;1PMb

e Expect MG to require less accurate D, 1 solution
— Local mode deflation D1 accuracy 107°
— MG D1 accuracy?
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