Revisiting strong coupling QCD at finite baryon density and temperature

> M.Fromm, Ph. de Forcrand ETH, Zürich

Lattice'08, July 16th, 2008

Strong coupling QCD (SCQCD) under investigation for > 25 years. . .

Analytical (Mean Field $1/d$)	Numerical
 Mass spectrum: Kawamoto and Smit '81, Kluberg-Stern, Morel, Petersson '82 	• Karsch and Mütter '89, MDP-approach ($T \approx$ 0, $\mu \approx \mu_c$)
 Phase diagram, Damgaard, Kawamoto, Shigemoto '84 	• Boyd et al. '92, MDP at $\mathcal{T} pprox \mathcal{T}_{\mathcal{C}}, \mu = 0$
• Phase diagram with $1/g^2$ corrections: Faldt and	 Azcoiti et al. '99 (MDP under scrutiny)
 Latest: Nishida '04, Kawamoto et al. '05, Miura and Ohnishi 	• de Forcrand and Kim 06, HMC, mass spectrum
'08 (next talk)	

Some Definitions:

$$Z = Z(m, \mu, \beta) = \int \mathcal{D} U \mathcal{D} \bar{\chi} \mathcal{D} \chi e^{-S_{\mathrm{F}} - \beta S_{\mathrm{G}}},$$

 μ chemical potential, m staggered quark mass, $\beta=\frac{6}{g_0^2}$ inverse gauge coupling

$$\begin{split} S_{\rm G} &= \sum_{P} \left(1 - \frac{1}{3} \operatorname{Re} \operatorname{tr}[U_{P}] \right) \\ S_{\rm F} &= \sum_{x,\nu} \bar{\chi}_{x} \left[\eta_{x\nu} U_{x\nu} \chi_{x+\nu} - \eta_{x\nu}^{-1} U_{x-\nu\nu}^{\dagger} \chi_{x-\nu} \right] + 2m \sum_{x} \bar{\chi}_{x} \chi_{x} \end{split}$$

 $\eta_{x\nu} = e^{\mu} \ (\nu = 0)$ and $(-1)^{\sum_{\rho < \nu} x_{\rho}}$ otherwise.

Strong coupling QCD (SCQCD)

In Strong (infinite) coupling limit, $\beta = 0$ - can do integral in links $U_{x\nu}$ first [Rossi & Wolff]:

$$Z(m,\mu) = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi e^{2m\sum_{x}\bar{\chi}_{x}\chi_{x}} \prod_{\langle xy \rangle} F_{xy}$$

where
$$F_{xy} = \sum_{k=0}^{5} (-1)^k \alpha_k (M_x M_y)^k + \kappa/6 \left[\left(\bar{B}_x B_y \right)^3 + \left(\bar{B}_y B_x \right)^3 \right]$$
 and
 $\kappa = \begin{cases} 0, & \text{for } U(3) \\ 1, & \text{for } SU(3) \end{cases}$

New degrees of freedom are color singlet

Monomers $M_x = \sum_{a,x} \bar{\chi}_{ax} \chi_{ax}$, (•), monomers per site $n_x = 0, ..., 3$ Dimers $D_{k,xy} = \frac{1}{k!} (M_x M_y)^k$ (-, =, \equiv), bond number $n_b = 0, ..., 3$ (Anti-)Baryons $B_x = \chi_{1x} \chi_{2x} \chi_{3x}$, $\bar{B}_x = \bar{\chi}_{3x} \bar{\chi}_{2x} \bar{\chi}_{1x}$, ---

SCQCD loop gas

Self-avoiding loops C of $\overline{B}B_x$ pairs are formed, with signed weights $\rho(C)$,

$$Z(m,\mu) = \sum_{\{n_x,n_b,\Box\}} \prod_b \frac{(3-n_b)!}{3!n_b!} \prod_x \frac{3!}{n_x!} (2m)^{n_x} \prod_{\text{loops } C} \rho(C) ,$$

constraint $n_x + \sum_{b_x} n_{b_x} = 3.$

Example

• MDP description [Karsch & Mütter, 1989]: Signed baryonic loops are associated with polymer loops. Mapping the weight

 $\rho_B(C) \rightarrow w_{polymer}(C)$ $\pm \cosh 3\mu/T \rightarrow 1 \pm \cosh 3\mu/T$

softens the sign problem.

SCQCD loop gas

Self-avoiding loops C of $\overline{B}B_x$ pairs are formed, with signed weights $\rho(C)$,

$$Z(m,\mu) = \sum_{\{n_x,n_b,\Box\}} \prod_b \frac{(3-n_b)!}{3!n_b!} \prod_x \frac{3!}{n_x!} (2m)^{n_x} \prod_{\text{loops } C} \rho(C) ,$$

constraint $n_x + \sum_{b_x} n_{b_x} = 3.$

 MDP description [Karsch & Mütter, 1989]: Signed baryonic loops are associated with polymer loops. Mapping the weight

> $ho_B(C) \rightarrow w_{polymer}(C)$ $\pm \cosh 3\mu/T \rightarrow 1 \pm \cosh 3\mu/T$

softens the sign problem.

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}.$$

 Corresponds to introduction of additional monomers ("worm" head and tail)

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}.$$

- Corresponds to introduction of additional monomers ("worm" head and tail)
- MC-update via heatbath shift of head, sample configs contributing to $\langle M_{bx_1}M_{cx_2} \rangle$

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}$$

- Corresponds to introduction of additional monomers ("worm" head and tail)
- MC-update via heatbath shift of head, sample configs contributing to $\langle M_{bx_1} M_{cx_2} \rangle$
- No restrictions in mass range (e.g. can take m→ 0) in contrast to local monomer changing Metropolis step ↔ ●●

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}.$$

- Corresponds to introduction of additional monomers ("worm" head and tail)
- MC-update via heatbath shift of head, sample configs contributing to $\langle M_{bx_1} M_{cx_2} \rangle$
- No restrictions in mass range (e.g. can take m→ 0) in contrast to local monomer changing Metropolis step ↔ ●●

• See U(N) [Adams & Chandrasekharan '03]

Starting over from initial formulation of $Z = \int \dots$ introduce two additional meson fields M_{bx_1}, M_{cx_2} , i.e.

$$\langle M_{bx_1}M_{cx_2}\rangle = \int \mathcal{D}\bar{\chi}\mathcal{D}\chi M_{bx_1}M_{cx_2}\mathrm{e}^{2m\sum_x \bar{\chi}_x \chi_x} \prod_{\langle xy \rangle} F_{xy}.$$

- Corresponds to introduction of additional monomers ("worm" head and tail)
- MC-update via heatbath shift of head, sample configs contributing to $\langle M_{bx_1}M_{cx_2}\rangle$
- No restrictions in mass range (e.g. can take m→ 0) in contrast to local monomer changing Metropolis step ↔ ●●
- See U(N) [Adams & Chandrasekharan '03]

Simple efficiency test

Consistency check with HMC

Consistency check with HMC

SCQCD chiral restoration transition

Phase diagram in the chiral limit as obtained by *mean-field* calculations [Damgaard et al. '85, Nishida '04, Kawamoto et al. '05]

Literature: $T_c = \frac{5}{3}$, $\mu_c(T = 0) = 0.57 - 0.66$. $(\sigma \propto \langle \bar{\chi}_a \chi_a \rangle)$

SCQCD chiral restoration transition

Puzzle

- Strong coupling MC-simulations [Karsch & Mütter 1989] at *finite* quark mass and T = 1/4 confirm 1st order finite μ transition and extrapolate to $\mu_c(T \approx 0, m = 0) = 0.63$ (in agreement with mean-field)
- However: Expect (T = 0)-phase transition when

$$3\mu \ge F_B \approx M_{
m Nucleon} \approx 3$$
, i.e. $\mu_c \approx 1$

- Nuclear attraction strong, $\mathcal{O}(300\,\mathrm{MeV})$?
- Or: Finite *T* effects (MC), extrapolation in *m* (MC) or mean field approach inaccurate ?

 \rightarrow Check with worm-MC in the chiral limit, $\mathcal{T}\approx 0.$

• Note: Mean field calculations with $1/g^2$ corrections [Bilić et al. 1992] show that $\mu_c \to M_N/3$

M. Fromm Revisiting SCQCD at finite μ and T

M. Fromm Revisiting SCQCD at finite μ and T

M. Fromm Revisiting SCQCD at finite μ and T

M. Fromm Revisiting SCQCD at finite μ and T

c.f. Mean-Field phase diagram, Nishida '04: qualitative agreement

Preliminary Results, m = 0

Preliminary Results, m = 0

Take $T_c = 5/3$, c.f. MC $T_c \approx 1.4$ [Boyd et al.'92]

Preliminary Results, m = 0

Take $T_c = 5/3$, c.f. MC $T_c \approx 1.4$ [Boyd et al.'92]

Summary & Outlook

- Can locate T=1/4 transition with $\mu_c\approx 0.62$ in the chiral limit (< $m_B/3$), $T=1/2, \ \mu_c\approx 0.54$
- Observe smoothening of finite *T* transition with increasing mass in accord with mean-field

"Assignment"

- Extrapolation $T \rightarrow 0$ remains open,
 - Study 1st order PT with multicanonical algorithm
 - Include asymmetry γ to vary ${\cal T}$ continuously
 - Check mean-field predicted relation $T = \gamma^2 / N_t$
- SCQCD Phase diagram
 - In the chiral limit: Locate TCP
 - CEP for varying quark mass
 - Flavor dependence of phase diagram
- Consistency check $\mu
 ightarrow i \mu$

Average sign

