# Determining bare quark masses for $N_f = 2 + 1$ dynamical simulations

Mike Peardon, for the Spectrum Collaboration

School of Mathematics, Trinity College Dublin

Lattice 2008 - College of William and Mary, July 14, 2008

- Physics overview
- Lattice set-up:  $N_f = 2 + 1$  dynamical QCD on anistropic lattices.
- How to match simulation data to the physical quark mass point.
- "Newport News" co-ordinates
- Mass ratio extrapolations:  $m_H/m_\Omega$
- **Preliminary**  $N_f = 2 + 1$  spectrum
- r<sub>0</sub> determination
- Summary

- The first dynamical,  $N_f = 2 + 1$ , anisotropic lattice simulations.
- The anisotropic lattice is particularly well-suited to spectroscopy calculations
- The spectrum collaboration aims to investigate the spectrum and decays of light mesons and baryons, including isoscalar mesons.
- First step: how should the strange quark mass be set in a Wilson-like  $N_f = 2 + 1$  setting?
- How should contact with the physical light and strange quark masses be made?

# Anisotropic lattice action

#### $\mathcal{O}(a^2)$ tree-level improved gauge action

$$\begin{split} S_{G}^{\xi}[U] &= \frac{\beta}{N_{c}} \left\{ \frac{1}{\xi_{0}} \sum_{x,s>s'} \left[ \frac{5}{3u_{s}^{4}} \mathcal{P}_{ss'}(x) - \frac{1}{12u_{s}^{6}} \mathcal{R}_{ss'}(x) \right] \right. \\ &+ \left. \xi_{0} \sum_{x,s} \left[ \frac{4}{3u_{s}^{2}u_{t}^{2}} \mathcal{P}_{st}(x) - \frac{1}{12u_{s}^{4}u_{t}^{2}} \mathcal{R}_{st}(x) \right] \right\}, \end{split}$$

- $\mathcal{P}$  is the  $1 \times 1$  plaquette,  $\mathcal{R}$  is the  $2 \times 1$  rectangle
- $u_t = 1, u_s = \langle \Box \rangle^{1/4}$
- Configurations generated using RHMC.
- Action parameters needed to restore rotational symmetries are tuned non-perturbatively (Robert Edwards; previous talk).
- Perturbative determinations underway (Justin Foley's talk)

### Anisotropic lattice action

 $\mathcal{O}(a)$  Sheikholeslami-Wohlert improved quark action

$$S_{F}^{\xi}[U,\overline{\psi},\psi] = a_{s}^{3}a_{t}\sum_{x}\overline{\psi}(x)Q\psi(x)$$
$$Q = \left[m_{0}+\nu_{t}W_{t}+\nu_{s}W_{s}-\frac{a_{s}}{2}\left(c_{t}\sigma_{st}F^{st}+\sum_{s< s'}c_{s}\sigma_{ss'}F^{ss'}\right)\right]$$

• All links are spatially stoutened;  $n_{\rho} = 2, \rho = 0.14$ •  $\sigma_{\mu\nu} = \frac{1}{2} [\gamma_{\mu}, \gamma_{\nu}], F_{\mu\nu}(x) = \frac{1}{4} \text{Im}(\mathcal{P}_{\mu\nu}(x))$ •  $W_{\mu} = \nabla_{\mu} - \frac{a_{\mu}}{2} \gamma_{\mu} \Delta_{\mu}$ •  $\nabla_{\mu} f(x) = \frac{1}{2a_{\mu}} \left[ U_{\mu}(x) f(x+\mu) - U_{\mu}^{\dagger}(x-\mu) f(x-\mu) \right]$ •  $\Delta_{\mu} f(x) = \frac{1}{a_{\mu}^{2}} \left[ U_{\mu}(x) f(x+\mu) + U_{\mu}^{\dagger}(x-\mu) f(x-\mu) - 2f(x) \right]$ 

Mike Peardon (TCD)

## Simulation parameters

| Volume              | $a_t m_s^0$ | $a_t m_l^0$ | $m_\pi/m_ ho$ |
|---------------------|-------------|-------------|---------------|
| $12^3 \times 96$    | -0.0539     | -0.0539     | 0.833(7)      |
| $12^3 \times 96$    | -0.0539     | -0.0698     | 0.742(9)      |
| $12^3 \times 96$    | -0.0539     | -0.0793     | 0.69(2)       |
| $12^{3} \times 96$  | -0.0539     | -0.0825     | 0.59(2)       |
| $16^3 	imes 96$     | -0.0539     | -0.0825     | 0.61(2)       |
| $12^3 	imes 96$     | -0.0617     | -0.0617     | 0.812(12)     |
| $16^3 	imes 128$    | -0.0742     | -0.0742     | 0.6880(18)    |
| $16^3 	imes 128$    | -0.0742     | -0.0808     | 0.571(5)      |
| $16^3 	imes 128$    | -0.0742     | -0.0830     | 0.490(6)      |
| $16^{3} \times 128$ | -0.0742     | -0.0840     | 0.444(7)      |
| $24^{3} \times 128$ | -0.0742     | -0.0840     | 0.447(4)      |

• Between 175-770 configurations have been analysed on these ensembles.

Mike Peardon (TCD)

### How were the bare quark masses chosen?

- Quark action breaks chiral symmetry: the quarks have an additive mass renormalisation.
- This complicates quark mass setting: how can we vary the bare parameters in the lattice action to approach the physical theory?
- "Partially quenched" critical mass varies with  $a_t m_s, a_t m_l$  and  $m_l^{\rm crit}$  varies with bare parameters ...
- ... as does  $r_0/a_s$ .
- Our solution: track hadron mass ratios, and follow "well-chosen" lines of constant bare  $a_t m_s^0$ .
- Avoid all reference to the lattice spacing in observables.
- Extrapolate/interpolate hadron mass ratios to physical point. We use m<sub>Ω</sub> as a reference scale. Ω is QCD-stable, has mild light-quark dependence in χ-PT and mild finite-volume dependence.

# Choosing co-ordinates for the $N_f = 2 + 1$ theory space

Always use physical, dimensionless observables; use  $m_{\Omega}$  to set the scale everywhere.

"Newport News" parameterisation

Parameterise the strange and light quark masses using:

S

$$U_{\omega}=rac{9m_{\pi}^2}{4m_{\Omega}^2}$$

$$\omega=rac{9(2m_K^2-m_\pi^2)}{4m_\Omega^2}$$

The numerators are proportional to the quark masses at leading-order in  $\chi$ -PT.

# Choosing co-ordinates for the $N_f = 2 + 1$ theory space

#### "Newport News" parameterisation

$$I_{\omega} = rac{9m_{\pi}^2}{4m_{\Omega}^2}, s_{\omega} = rac{9(2m_K^2 - m_{\pi}^2)}{4m_{\Omega}^2}$$

- In the  $N_f=3$  theory,  $l_\Omega=s_\Omega$  and as  $m_q\longrightarrow\infty, l_\Omega\longrightarrow 1$
- The "real world" is at  $(I_{\Omega}^*, s_{\Omega}^*) = (0.0153, 0.3789)$
- We kept the bare strange quark mass parameter in the lattice lagrangian fixed in three separate runs.
- The third "main branch" uses a best guess strange quark.

#### Approaching the physical point



Mike Peardon (TCD)

 $N_f = 2 + 1$ 

#### Approaching the physical point



Mike Peardon (TCD)

 $N_f = 2 + 1$ 

# Simulation parameters

| Volume           | $a_t m_s^0$ | $a_t m_l^0$ | l <sub>Ω</sub> | <i>s</i> Ω |
|------------------|-------------|-------------|----------------|------------|
| $12^3 	imes 96$  | -0.0539     | -0.0539     | 0.564(14)      | 0.564(14)  |
| $12^3	imes 96$   | -0.0539     | -0.0698     | 0.356(8)       | 0.535(10)  |
| $12^3 	imes 96$  | -0.0539     | -0.0793     | 0.214(6)       | 0.532(11)  |
| $12^3	imes 96$   | -0.0539     | -0.0825     | 0.148(6)       | 0.498(11)  |
| $16^3 	imes 96$  | -0.0539     | -0.0825     | 0.161(9)       | 0.539(20)  |
| $12^3 	imes 96$  | -0.0617     | -0.0617     | 0.549(19)      | 0.549(19)  |
| $16^3 	imes 128$ | -0.0742     | -0.0742     | 0.396(7)       | 0.396(7)   |
| $16^3 	imes 128$ | -0.0742     | -0.0808     | 0.234(7)       | 0.381(11)  |
| $16^3 	imes 128$ | -0.0742     | -0.0830     | 0.157(4)       | 0.363(8)   |
| $16^3 	imes 128$ | -0.0742     | -0.0840     | 0.127(4)       | 0.365(10)  |
| $24^3 	imes 128$ | -0.0742     | -0.0840     | 0.1223(16)     | 0.362(3)   |

- For this lattice action, lines of constant bare  $a_t m_s$  are close to horizontal.
- Different actions will have different trajectories in  $(I_{\Omega}, s_{\omega})$ .
- Indication is the  $m_s = -0.0743$  simulations are close to the physical point, but undershoot slightly.
- Corrected quark mass can be interpolated.
- With current data-set, physics can be interpolated in strange quark mass. Interpolation should be reasonable, since last set of runs come close to physical point.

# $N_f = 2 + 1$ simple spectroscopy

- At each simulation point, once (*l*<sub>Ω</sub>, *s*<sub>Ω</sub>) are determined, they represent quark masses in extrapolations (based on χ-PT).
- Mass ratios (using  $m_{\Omega}$  as a common scale) are extrapolated
- At this stage, only the most naive chiral fits are attempted:

| extrapolation: $m_{\Omega}$ | ratios, $(I_\Omega, s_\Omega)$ parameterisation            |
|-----------------------------|------------------------------------------------------------|
|                             | $\frac{m_H}{m_\Omega} = a_H + b_H l_\Omega + c_H s_\Omega$ |

- Parameterisation gives a good representation of the data in the range of simulation parameters attempted here; all fits are good.
- Fits using e.g. a<sub>t</sub>m<sub>H</sub> were more problematic.

# $N_f = 2 + 1$ PRELIMINARY simple spectroscopy



# a0 effective mass



- Smeared-smeared correlator measurement.
- Simplest  $\bar{\psi}\psi$  same-site operator construction.
- No quenched artefacts. Mass is consistent with 1 GeV

Mike Peardon (TCD)

- Following the same philosophy, a determination of  $r_0 m_{\Omega}$  at the physical point can be used to compute  $r_0$  in QCD.
- Use a small  $5 \times 5$  basis of operators, built from stout-smeared links
- Raw temporal links are used
- No evidence of string-breaking in these measurements
- The systematic uncertainties are yet to be controlled; I won't present a result today.

# $N_f = 2 + 1$ simple spectroscopy



### Effective mass from smeared spatial Wilson loops



- Smeared Wilson-loop basis measurement.
- Difficult to get a good plateau from the Wilson loop.

# Conclusions

- First simulations of  $N_f = 2 + 1$  QCD with dynamical quarks on anisotropic lattices are underway.
- The problem of setting the input strange quark mass has a simple solution: track movement of simulations in  $(I_{\Omega}, s_{\Omega})$  plane.
- Access to  $\chi$ -PT extrapolations is helped by fitting mass ratios (using  $m_{\Omega}$ ) with  $l_{\Omega}$  and  $s_{\Omega}$  representing the quark masses.
- Physical units only appear once data is extrapolated to  $(l_{\Omega}^*, s_{\Omega}^*)$
- These extrapolations give an encouraging first look at the low-lying spectrum on these ensembles; still more to do!
- The anisotropic lattice still gives good resolution of correlation functions that fall rapidly into noise; more interesting physics to come from these ensembles!