Determining bare quark masses for $N_{f}=2+1$ dynamical simulations

Mike Peardon, for the Spectrum Collaboration

School of Mathematics, Trinity College Dublin
Lattice 2008 - College of William and Mary, July 14, 2008

Overview

- Physics overview
- Lattice set-up: $N_{f}=2+1$ dynamical QCD on anistropic lattices.
- How to match simulation data to the physical quark mass point.
- "Newport News" co-ordinates
- Mass ratio extrapolations: m_{H} / m_{Ω}
- Preliminary $N_{f}=2+1$ spectrum
- r_{0} determination
- Summary

Physics overview

- The first dynamical, $N_{f}=2+1$, anisotropic lattice simulations.
- The anisotropic lattice is particularly well-suited to spectroscopy calculations
- The spectrum collaboration aims to investigate the spectrum and decays of light mesons and baryons, including isoscalar mesons.
- First step: how should the strange quark mass be set in a Wilson-like $N_{f}=2+1$ setting?
- How should contact with the physical light and strange quark masses be made?

Anisotropic lattice action

$\mathcal{O}\left(a^{2}\right)$ tree-level improved gauge action

$$
\begin{aligned}
S_{G}^{\xi}[U] & =\frac{\beta}{N_{c}}\left\{\frac{1}{\xi_{0}} \sum_{x, s>s^{\prime}}\left[\frac{5}{3 u_{s}^{4}} \mathcal{P}_{s s^{\prime}}(x)-\frac{1}{12 u_{s}^{6}} \mathcal{R}_{s s^{\prime}}(x)\right]\right. \\
& \left.+\xi_{0} \sum_{x, s}\left[\frac{4}{3 u_{s}^{2} u_{t}^{2}} \mathcal{P}_{s t}(x)-\frac{1}{12 u_{s}^{4} u_{t}^{2}} \mathcal{R}_{s t}(x)\right]\right\},
\end{aligned}
$$

- \mathcal{P} is the 1×1 plaquette, \mathcal{R} is the 2×1 rectangle
- $u_{t}=1, u_{s}=\langle\square\rangle^{1 / 4}$
- Configurations generated using RHMC.
- Action parameters needed to restore rotational symmetries are tuned non-perturbatively (Robert Edwards; previous talk).
- Perturbative determinations underway (Justin Foley's talk)

Anisotropic lattice action

\mathcal{O} (a) Sheikholeslami-Wohlert improved quark action

$$
\begin{aligned}
S_{F}^{\xi}[U, \bar{\psi}, \psi] & =a_{s}^{3} a_{t} \sum_{x} \bar{\psi}(x) Q \psi(x) \\
Q & =\left[m_{0}+\nu_{t} W_{t}+\nu_{s} W_{s}-\frac{a_{s}}{2}\left(c_{\mathrm{t}} \sigma_{s t} F^{s t}+\sum_{s<s^{\prime}} c_{s} \sigma_{s s^{\prime}} F^{s s^{\prime}}\right)\right]
\end{aligned}
$$

- All links are spatially stoutened; $n_{\rho}=2, \rho=0.14$
- $\sigma_{\mu \nu}=\frac{1}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right], F_{\mu \nu}(x)=\frac{1}{4} \operatorname{Im}\left(\mathcal{P}_{\mu \nu}(x)\right)$
- $W_{\mu}=\nabla_{\mu}-\frac{a_{\mu}}{2} \gamma_{\mu} \Delta_{\mu}$
- $\nabla_{\mu} f(x)=\frac{1}{2 a_{\mu}}\left[U_{\mu}(x) f(x+\mu)-U_{\mu}^{\dagger}(x-\mu) f(x-\mu)\right]$
- $\Delta_{\mu} f(x)=\frac{1}{a_{\mu}^{2}}\left[U_{\mu}(x) f(x+\mu)+U_{\mu}^{\dagger}(x-\mu) f(x-\mu)-2 f(x)\right]$

Simulation parameters

Volume	$a_{t} m_{s}^{0}$	$a_{t} m_{I}^{0}$	m_{π} / m_{ρ}
$12^{3} \times 96$	-0.0539	-0.0539	$0.833(7)$
$12^{3} \times 96$	-0.0539	-0.0698	$0.742(9)$
$12^{3} \times 96$	-0.0539	-0.0793	$0.69(2)$
$12^{3} \times 96$	-0.0539	-0.0825	$0.59(2)$
$16^{3} \times 96$	-0.0539	-0.0825	$0.61(2)$
$12^{3} \times 96$	-0.0617	-0.0617	$0.812(12)$
$16^{3} \times 128$	-0.0742	-0.0742	$0.6880(18)$
$16^{3} \times 128$	-0.0742	-0.0808	$0.571(5)$
$16^{3} \times 128$	-0.0742	-0.0830	$0.490(6)$
$16^{3} \times 128$	-0.0742	-0.0840	$0.444(7)$
$24^{3} \times 128$	-0.0742	-0.0840	$0.447(4)$

- Between 175-770 configurations have been analysed on these ensembles.

How were the bare quark masses chosen?

- Quark action breaks chiral symmetry: the quarks have an additive mass renormalisation.
- This complicates quark mass setting: how can we vary the bare parameters in the lattice action to approach the physical theory?
- "Partially quenched" critical mass varies with $a_{t} m_{s}, a_{t} m_{l}$ and $m_{l}^{\text {crit }}$ varies with bare parameters ...
- ... as does r_{0} / a_{s}.
- Our solution: track hadron mass ratios, and follow "well-chosen" lines of constant bare $a_{t} m_{s}^{0}$.
- Avoid all reference to the lattice spacing in observables.
- Extrapolate/interpolate hadron mass ratios to physical point. We use m_{Ω} as a reference scale. Ω is QCD-stable, has mild light-quark dependence in χ-PT and mild finite-volume dependence.

Choosing co-ordinates for the $N_{f}=2+1$ theory space

Always use physical, dimensionless observables; use m_{Ω} to set the scale everywhere.

"Newport News" parameterisation

Parameterise the strange and light quark masses using:

$$
\begin{gathered}
\iota_{\omega}=\frac{9 m_{\pi}^{2}}{4 m_{\Omega}^{2}} \\
s_{\omega}=\frac{9\left(2 m_{K}^{2}-m_{\pi}^{2}\right)}{4 m_{\Omega}^{2}}
\end{gathered}
$$

The numerators are proportional to the quark masses at leading-order in χ-PT.

Choosing co-ordinates for the $N_{f}=2+1$ theory space

"Newport News" parameterisation

$$
\iota_{\omega}=\frac{9 m_{\pi}^{2}}{4 m_{\Omega}^{2}}, s_{\omega}=\frac{9\left(2 m_{K}^{2}-m_{\pi}^{2}\right)}{4 m_{\Omega}^{2}}
$$

- In the $N_{f}=3$ theory, $I_{\Omega}=s_{\Omega}$ and as $m_{q} \longrightarrow \infty, I_{\Omega} \longrightarrow 1$
- The "real world" is at $\left(I_{\Omega}^{*}, s_{\Omega}^{*}\right)=(0.0153,0.3789)$
- We kept the bare strange quark mass parameter in the lattice lagrangian fixed in three separate runs.
- The third "main branch" uses a best guess strange quark.

Approaching the physical point

Approaching the physical point

Simulation parameters

Volume	$a_{t} m_{s}^{0}$	$a_{t} m_{I}^{0}$	I_{Ω}	s_{Ω}
$12^{3} \times 96$	-0.0539	-0.0539	$0.564(14)$	$0.564(14)$
$12^{3} \times 96$	-0.0539	-0.0698	$0.356(8)$	$0.535(10)$
$12^{3} \times 96$	-0.0539	-0.0793	$0.214(6)$	$0.532(11)$
$12^{3} \times 96$	-0.0539	-0.0825	$0.148(6)$	$0.498(11)$
$16^{3} \times 96$	-0.0539	-0.0825	$0.161(9)$	$0.539(20)$
$12^{3} \times 96$	-0.0617	-0.0617	$0.549(19)$	$0.549(19)$
$16^{3} \times 128$	-0.0742	-0.0742	$0.396(7)$	$0.396(7)$
$16^{3} \times 128$	-0.0742	-0.0808	$0.234(7)$	$0.381(11)$
$16^{3} \times 128$	-0.0742	-0.0830	$0.157(4)$	$0.363(8)$
$16^{3} \times 128$	-0.0742	-0.0840	$0.127(4)$	$0.365(10)$
$24^{3} \times 128$	-0.0742	-0.0840	$0.1223(16)$	$0.362(3)$

Approaching the physical point

- For this lattice action, lines of constant bare $a_{t} m_{s}$ are close to horizontal.
- Different actions will have different trajectories in $\left(I_{\Omega}, s_{\omega}\right)$.
- Indication is the $m_{s}=-0.0743$ simulations are close to the physical point, but undershoot slightly.
- Corrected quark mass can be interpolated.
- With current data-set, physics can be interpolated in strange quark mass. Interpolation should be reasonable, since last set of runs come close to physical point.

$N_{f}=2+1$ simple spectroscopy

- At each simulation point, once $\left(l_{\Omega}, s_{\Omega}\right)$ are determined, they represent quark masses in extrapolations (based on $\chi-\mathrm{PT}$).
- Mass ratios (using m_{Ω} as a common scale) are extrapolated
- At this stage, only the most naive chiral fits are attempted:

extrapolation: m_{Ω} ratios, $\left(/_{\Omega}, s_{\Omega}\right)$ parameterisation

$$
\frac{m_{H}}{m_{\Omega}}=a_{H}+b_{H} l_{\Omega}+c_{H} s_{\Omega}
$$

- Parameterisation gives a good representation of the data in the range of simulation parameters attempted here; all fits are good.
- Fits using e.g. $a_{t} m_{H}$ were more problematic.

$N_{f}=2+1$ PRELIMINARY simple spectroscopy

$\mathrm{N}_{\mathrm{f}}=2+1$ Hadron Spectrum: $\left\{I_{\Omega}, \mathrm{S}_{\Omega}\right\}$, leading-order extrapolation
Anisotropic clover: $\beta=1.5, \mathrm{a}_{\mathrm{s}} \sim 0.12 \mathrm{fm}$

a_{0} effective mass

- Smeared-smeared correlator measurement.
- Simplest $\bar{\psi} \psi$ same-site operator construction.
- No quenched artefacts. Mass is consistent with 1 GeV

Measuring r_{0}

- Following the same philosophy, a determination of $r_{0} m_{\Omega}$ at the physical point can be used to compute r_{0} in QCD.
- Use a small 5×5 basis of operators, built from stout-smeared links
- Raw temporal links are used
- No evidence of string-breaking in these measurements
- The systematic uncertainties are yet to be controlled; I won't present a result today.

$N_{f}=2+1$ simple spectroscopy

Effective mass from smeared spatial Wilson loops

- Smeared Wilson-loop basis measurement.
- Difficult to get a good plateau from the Wilson loop.

Conclusions

- First simulations of $N_{f}=2+1$ QCD with dynamical quarks on anisotropic lattices are underway.
- The problem of setting the input strange quark mass has a simple solution: track movement of simulations in $\left(I_{\Omega}, s_{\Omega}\right)$ plane.
- Access to χ-PT extrapolations is helped by fitting mass ratios (using m_{Ω}) with I_{Ω} and s_{Ω} representing the quark masses.
- Physical units only appear once data is extrapolated to $\left(l_{\Omega}^{*}, s_{\Omega}^{*}\right)$
- These extrapolations give an encouraging first look at the low-lying spectrum on these ensembles; still more to do!
- The anisotropic lattice still gives good resolution of correlation functions that fall rapidly into noise; more interesting physics to come from these ensembles!

