2+1 flavor lattice QCD simulation with O(a)-improved Wilson quarks

Naoya Ukita (CCS, University of Tsukuba) for PACS-CS Collaboration

Lattice 2008

July 14, 2008

PACS-CS Collaboration Member

S. Aoki, N. Ishii, N. Ishizuka, D. Kadoh, K. Kanaya,
Y. Kuramashi, Y. Namekawa, Y. Taniguchi,
A. Ukawa, N. Ukita, T. Yoshie (University of Tsukuba)

K.-I. Ishikawa, M. Okawa (Hiroshima Univ.)

T. Izubuchi (Kanazawa Univ.)

PACS-CS Project:

 $N_f = 2 + 1$ Simulations at the Physical Point on large enough lattices (\rightarrow plenary talk by Kuramashi)

u-d quarks : Domain-Decomposed HMC (DDHMC) algorithm (Lüscher, 2003) + Hasenbusch trick (Hasenbusch, 2001; Hasenbusch, Jansen, 2003) +···

s quark : UV-filterd Polynomial HMC (UVPHMC) algorithm

(JLQCD Collaborations, 2002)

- O(a) improved Wilson quark action with nonperturbative c_{SW} (CP-PACS and JLQCD Collaborations, 2006)
- Iwasaki gauge action (Iwasaki, 1983)
- $\beta = 1.90 \ (a = 0.0907(13) \text{fm})$
- $32^3 \times 64$ lattice
- $m_{\rm ud} = 3.5 \sim 67 \ {\rm MeV}$

on the PACS-CS computer (2560nodes, 14.3TFLOPS) at University of Tsukuba.

Plan to this talk :

- Introduction
- Algorithm for $N_f = 2$ part : DDHMC, Hasenbusch trick, Solver (\rightarrow plenary talk by Ishikawa)
- Simulation Parameters and Data Set
- Run Status
- Conclusion

DDHMC Algorithm (Lüscher, 2003)

Here we consider preconditioning for $N_f = 2 \text{ O(a)-improved Wilson-Dirac op.}$

• Jacobi preconditioning : $|\det(1+T)|^2 |\det D|^2$

 $D = 1 + (1 + T)^{-1}M$, T : clover term, M : hopping term

• Domain decomposition splitting lattice sites into even & odd domains

• Even-Odd site preconditioning for $D_{EE(OO)}$: $|\det D_{EE}|^2 \Rightarrow |\det \overline{D}_{EE}|^2$

• Further preconditioning by spin & hopping structure : $|\det \hat{D}_{IR}|^2 \Rightarrow |\det D_{IR}|^2$

After all these preconditioning, we have partition function,

$$Z = \int DU \underbrace{e^{-S_G} |\det(1+T)|^2}_{\text{Gauge part}} \underbrace{|\det \bar{D}_{EE}|^2 |\det \bar{D}_{OO}|^2}_{\text{UV part}} \underbrace{|\det D_{IR}|^2}_{\text{IR part}} |\det D_{IR}|^2.$$

To reduce the HMC simulation cost, Multi time step integrator is employed for Gauge, UV and IR parts. (Sexton and Weingarten, 1992)

In our simulations, the relative magnitudes of force terms, F_G , F_{IR} , F_{UV} , are

$||F_G|| : ||F_{UV}|| : ||F_{IR}|| \approx 16 : 4 : 1.$

We choose the associated step sizes, $\delta \tau_G, \delta \tau_{UV}, \delta \tau_{IR}$ such that

 $\delta \tau_G ||F_G|| \approx \delta \tau_{UV} ||F_{UV}|| \approx \delta \tau_{IR} ||F_{IR}||,$

 $\delta \tau_G = \tau / N_0 N_1 N_2, \quad \delta \tau_{UV} = \tau / N_1 N_2, \quad \delta \tau_{IR} = \tau / N_2, \quad N_0 = N_1 = 4.$

For strange quark, we employ UVPHMC algorithm (CP-PACS and JLQCD Collaborations, 2006) where the domain decomposition is not used.

$$\|F_{\rm s}\| \approx \|F_{IR}\| \Rightarrow \delta\tau_{\rm s} = \delta\tau_{IR}.$$

For $m_{\rm ud} \ge 12$ MeV, this DDHMC + UVPHMC algorithm works stable, while 3.5 MeV run has large fluctuation of $||F_{IR}||$ and is slow to keep simulation stable.

We combine DDHMC with Hasenbusch's mass precondition for IR part (MPDDHMC).

+ Hasenbusch trick (Hasenbusch, 2001; Hasenbusch, Jansen, 2003)

 $D'_{IR} = D_{IR}(\kappa \rightarrow \kappa' = \rho \kappa)$, eg. $\rho = 0.9995$ to shift to the heavier mass

$$|\det D_{IR}|^2 = |\det D'_{IR}| \left| \det \left(\frac{D_{IR}}{D'_{IR}} \right) \right|^2$$

Step sizes, $\delta \tau_G$, $\delta \tau_{UV}$, $\delta \tau_{IR'}$, $\delta_{IR/IR'}$, are controlled by (N_0, N_1, N_2, N_3) . $N_0 = N_1 = 4$, N_2 and N_3 are chosen to reduce the fluctuation of $||F_{IR'}||$, $||F_{IR/IR'}||$.

Solver : Dx = b

For DDHMC algorithm $(12 \text{MeV} \le m_{\text{ud}} \le 67 \text{MeV})$,

- IR solver : SAP(single prec.) preconditioned GCR(double prec.) (Lüscher, 2004)
- UV solver : SSOR(single prec.) preconditioned GCR(double prec.)
- \bullet Stopping condition : $|Dx-b|/|b| \leq 10^{-14}$ for H, 10^{-9} for F

 \rightarrow Reversibility : $|\Delta U| \leq 10^{-12}$, $|\Delta H| \leq 10^{-8}$

Solver : Dx = b

For MPDDHMC algorithm ($m_{\rm ud}$ =3.5 MeV),

* Chronological guess for IR part (Brower, Ivanenko, Levi, Orginos, 1997)

 \star nested BiCGStab solver for IR and UV part :

• Outer solver(double prec.) : Solve Dx = b with preconditioner $M \approx D^{-1}$ with strict stopping condition 10^{-14} for F

• Inner solver(single prec.) : Solve $M \approx D^{-1}$ with appropriate precoditioner with automatic tolerance control $tol_{inner} = \min\left(\max\left(\frac{err_{outer}}{tol_{outer}}, 10^{-6}\right), 10^{-3}\right)$

* Deflation technique (Morgan, Wilcox, 2002; Lüscher, 2007)

• inner BiCGStab stagnant \rightarrow GCRO-DR (Parks et al, 2006)

(Generalized Conjugate Residual with implicit inner Orthogonalization and Deflated Restarting)

Physical Point simulations require

HMC : O(100) Tflops computer , MPDDHMC : O(10) Tflops computer.

$\kappa_{ m ud}$	0.13700	0.13727	0.13754	0.13754	0.13770	0.13781	0.137785
$\kappa_{ m s}$	0.13640	0.13640	0.13640	0.13660	0.13640	0.13640	0.13660
Algorithm	DDHMC	DDHMC	DDHMC	DDHMC	DDHMC	MPDDHMC	MPDDHMC
au	0.5	0.5	0.5	0.5	0.25	0.25	0.25
$(N_0, N_1, N_2, N_3, N_4)$	(4, 4, 10)	(4, 4, 14)	(4,4,20)	(4,4,28)	(4,4,16)	(4,4,4,6)	(4,4,2,4,4)
						(4,4,6,6)	
$ ho_1$	_	—	_	_	_	0.9995	0.9995
$ ho_2$	_	—	—	—	_	—	0.9990
$N_{ m poly}$	180	180	180	220	180	200	220
Replay	on	on	on	on	on	off	off
MD time	2000	2000	2250	2000	2000	1400	850
$m_{ud}[MeV]$	67	45	24	21	12	3.5	3.5
$m_{\pi}[MeV]$	702	570	411	385	296	156	162
CPU time [h]/ $ au$	0.29	0.44	1.3	1.1	2.7	7.1	6.0

shifted hopping parameter $\kappa_{\rm ud}'=\rho_1\kappa_{\rm ud}\sim 0.1377$

$$m_{\pi} = 570 \mathrm{MeV}$$

$$m_{\pi} = 296 \mathrm{MeV}$$

 $m_{\pi} = 156 \mathrm{MeV}$

Force History

$$m_{\pi} = 570 \mathrm{MeV}$$
 $m_{\pi} = 296 \mathrm{MeV}$ $m_{\pi} = 156 \mathrm{MeV}$

Effective mass : Meson

Fit Range $[t_{\min}, t_{\max}]$: Pseudoscalar [13 - 30], Vector [10 - 20]

Bin Size Dependence of Jacknife Error for m_{π}

plateau : after $100-200\tau$ same behavior for other masses jackknife analysis : 250τ (110τ)

 $156 \mathrm{MeV} \le m_{\pi} \le 411 \mathrm{MeV}$

Effective mass : Baryon

Fit Range $[t_{\min}, t_{\max}]$: Decuplet [13 - 30], Octet [10 - 20]

$\kappa_{\rm ud} = 0.137785, \kappa_{\rm s} = 0.13660: Preliminary$

 $\begin{aligned} \kappa_{\rm ud} &= 0.137785, \kappa_{\rm s} = 0.13660 \text{ is estimated as the physical point} \\ \text{from our ChPT analysis.} & (ChPT \to talk \text{ by Kadoh}) \end{aligned}$

IR part in MPDDHMC :
$$|\det D_{IR}|^2 = |\det D'_{IR}|^2 \left|\det \frac{D'_{IR}}{D''_{IR}}\right|^2 \left|\det \frac{D_{IR}}{D'_{IR}}\right|^2$$

acc(HMC)=0.83, CPU time = 6.0 [h]/ τ

Effective mass

$$m_{\pi} = 162 \mathrm{MeV}$$

Comparison with Chpt and Experiment

Preliminary

jackknife analysis = 50 au at $\kappa_{
m ud} = 0.137785$

	ChPT	experiment	$\kappa_{\rm ud} = 0.137785$
$m_{ m ud}^{\overline{MS}}$ [MeV]	2.53(5)	—	3.5(3)
$m_{ m s}^{\overline{MS}}$ [MeV]	72.7(8)	—	73.4(2)
f_{π} [MeV]	134.0(4.2)	$130.7 \pm 0.1 \pm 0.36$	129.0(5.4)
$f_K \; [{\sf MeV}]$	159.4(3.1)	$159.8 \pm 1.4 \pm 0.44$	160.6(1.4)

Conclusion

- $N_f = 2 + 1$ full QCD with O(a) improved Wilson quarks on $(2.9 \text{fm})^3$
- \bullet domain-decomposed HMC + Hasenbusch trick
- $m_{ud} = 3.5 \sim 67 [\text{MeV}]$
- $m_{\pi} = 156 \sim 702 [\text{MeV}]$
- a = 0.0907(13) fm
- Physical Point simulation in progress