

Solutions of the Ginsparg-Wilson equation

Nigel Cundy

Universität Regensburg

arXiv:0802.0170[hep-lat]

Overlap fermions in the continuum

• Consider the continuum Dirac operator

$$D_0\psi(x) = P\left\{e^{-i\int^x A_{\mu}(w)dw_{\mu}}\right\} \gamma_{\nu}\partial_{\nu}\left(P\left\{e^{i\int^x A_{\mu}(w)dw_{\mu}}\right\}\psi(x)\right)$$

- One flavour of massless quarks;
- Integration over repeated spacial indices assumed

• Apply renormilization group blocking defined by operators α and B:

$$Z = N(\alpha) \int d\psi_1 d\overline{\psi}_1 \int d\psi_0 d\psi_0 e^{-\overline{\psi}_0(x)D_0\psi_0(x) - \frac{1}{g_0^2}F_{\mu\nu}^2} e^{-(\overline{\psi}_1(x) - \overline{\psi}_0(x')B_d(x',x))\alpha(x,y)(\psi_1(y) - B(y,y')\psi_0(y'))}$$

$$= \int d\psi_1 d\overline{\psi}_1 e^{-\overline{\psi}_1(x)D_1\psi_1(x) - \frac{1}{g_1^2}F_{\mu\nu}^2}$$

- \bullet $\gamma_5 ext{-Hermiticity}$, continuum limit etc. restrict the possible blockings
- Blockings must be local
- Suppose that the original action is invariant under the infintesimal chiral transformation

$$- \psi_0^{\dagger} \to \psi_0^{\dagger} (1 + i\epsilon \gamma_5)$$
$$- \psi_0 \to (1 + i\epsilon \gamma_5) \psi_0$$

• What conditions does this impose on the blocked action?

$$Z' = \int d\psi_1 d\overline{\psi}_1 \int d\psi_0 d\overline{\psi}_0 e^{-(\overline{\psi}_1 - \overline{\psi}_0 B_d)\alpha(\psi_1 - B\psi_0)} e^{-\overline{\psi}_0 D_0 \psi_0 - \frac{1}{g_0^2} F_{\mu\nu}^2}$$

$$\left[1 + i\epsilon \overline{\psi}_1 B_d^{-1} \gamma_5 B_d \alpha(\psi_1 - B\psi_0) + i\epsilon (\overline{\psi}_1 - \overline{\psi}_0 B_d) \alpha B \gamma_5 B^{-1} \psi_1 \right]$$

$$- i\epsilon (\overline{\psi}_1 - \overline{\psi}_0 B_d) (B_d^{-1} \gamma_5 B_d \alpha + \alpha B \gamma_5 B^{-1}) (\psi_1 - B\psi_0)$$

$$= \int d\psi_1 d\overline{\psi}_1 \left(1 - i\epsilon \left[\overline{\psi}_1 B_d^{-1} \gamma_5 B_d \frac{\partial}{\partial \overline{\psi}_1} + \frac{\partial}{\partial \psi_1} B \gamma_5 B^{-1} \psi_1 + \frac{\partial}{\partial \psi_1} (\alpha^{-1} B_d^{-1} \gamma_5 B_d + B \gamma_5 B^{-1} \alpha^{-1}) \frac{\partial}{\partial \overline{\psi}_1} \right] \right) e^{-\overline{\psi}_1 D_0 \psi_1 - \frac{1}{g_1^2} F_{\mu\nu}^2}$$

Or,

$$D_1 B \gamma_5 B^{-1} + B_d^{-1} \gamma_5 B_d D_1 = D_1 (\alpha^{-1} B_d^{-1} \gamma_5 B_d + B \gamma_5 B^{-1} \alpha^{-1}) D_1$$

(Ginsparg, Wilson 1982)

I write

$$S = \gamma_5 B \gamma_5 B^{-1} \qquad R = S\alpha^{-1}$$

This gives a generalised Ginsparg-Wilson relation

$$D\gamma_5 S + S_d \gamma_5 D = \frac{1}{2} D(\gamma_5 R + R_d \gamma_5) D$$

There is a chiral symmetry

$$\psi \to e^{i\epsilon\gamma_5(S-RD)}\psi \qquad \overline{\psi} \to \overline{\psi}e^{i\epsilon(S_d-DR_d)\gamma_5}$$

And a topological charge

$$Q_f = \frac{1}{2} \text{Tr} \left(\gamma_5 S + S_d \gamma_5 - \gamma_5 RD - DR_d \gamma_5 \right)$$

• Now, consider the eigenfunctions of D_0 with a mass Λ :

$$(D_0 + \Lambda)\phi_+(x) = (\Lambda + i\lambda)\phi_+(x,\lambda)$$
$$(D_0 + \Lambda)\phi_-(x) = (\Lambda - i\lambda)\phi_-(x,\lambda)$$
$$\phi_+(x,\lambda) = \gamma_5\phi_-(x,\lambda)$$

• The eigenfunctions of $\gamma_5(D_0+\Lambda)$ are

$$\gamma_{5}(D_{0} + \Lambda) \frac{1}{\sqrt{2}} (\phi_{+}(x,\lambda) + e^{i\eta(\lambda)}\phi_{-}(x,\lambda)) =$$

$$\mu \frac{1}{\sqrt{2}} (\phi_{+}(x,\lambda) + e^{i\eta(\lambda)}\phi_{-}(x,\lambda))$$

$$\gamma_{5}(D_{0} + \Lambda) \frac{1}{\sqrt{2}} (\phi_{+}(x,\lambda) - e^{i\eta(\lambda)}\phi_{-}(x,\lambda)) =$$

$$-\mu \frac{1}{\sqrt{2}} (\phi_{+}(x,\lambda) - e^{i\eta(\lambda)}\phi_{-}(x,\lambda))$$

$$\mu = \sqrt{\Lambda^{2} + \lambda^{2}}; \qquad e^{i\eta(\lambda)} = \frac{i\lambda + \Lambda}{\sqrt{\Lambda^{2} + \lambda^{2}}}$$

• Can we construct a renormalisation group blocking from the eigenfunctions and eigenvectors?

Λ large and negative;

$$\begin{split} \alpha = & \infty \\ B(x,x') = & B_d^\dagger(x,x') = \sum_{\text{zero modes}} \phi_0(x',0) \phi_0^\dagger(x,0) + \\ & \int d\lambda \rho(\lambda) \left[\phi_+(x,\lambda) \phi_+^\dagger(x',\lambda) \left(\Lambda \frac{1 + e^{i\eta(\lambda)}}{i\lambda} \right)^{\frac{1}{2}} + \right. \\ & \left. \phi_-(x,\lambda) \phi_-^\dagger(x',\lambda) \left(\Lambda \frac{1 + e^{i\eta(-\lambda)}}{-i\lambda} \right)^{\frac{1}{2}} \right] \end{split}$$

• We obtain a new action

$$e^{-\overline{\psi}_1 D_1 \psi_1 + \int d\lambda \rho(\lambda) \log \left[\left(2 + 2 \frac{\Lambda}{\sqrt{\Lambda^2 + \lambda^2}} \right) \frac{\Lambda^2}{\lambda^2} \right] - \frac{1}{g_0^2} F_{\mu\nu}^2},$$

where

$$D_{1} = 1 + \gamma_{5} \operatorname{sign}(\gamma_{5}(D_{0} + \Lambda))$$

$$\int d\lambda \rho(\lambda) \log \left[\left(1 + \frac{\Lambda}{\sqrt{\Lambda^{2} + \lambda^{2}}} \right) \frac{2\Lambda^{2}}{\lambda^{2}} \right] =$$

$$c_{0} + \frac{c_{f}}{\Lambda^{4}} \int d^{4}x F_{\mu\nu}^{2} + \dots + O(1/\Lambda^{6})$$

• The blocking produces a shift in the gauge coupling and a redefinition of the Dirac operator.

- If B and D_0 are local, then D_1 is local.
- If the blocking is analytic function of the eigenvalue, no doublers or additive mass renormalisation and the same number of exact zero modes as D_0 , then D_1 is local (and, on the lattice) has the correct continuum limit.

The Ginsparg-Wilson relation for this transformation is

$$D_1 B^{-1} \gamma_5 B + B \gamma_5 B^{-1} D_1 = 0$$

and the topological charge is

$$\begin{split} Q_f &= \frac{1}{2} \mathrm{Tr} \; (B^{-1} \gamma_5 B + B \gamma_5 B^{-1}) \\ \mathrm{Tr} \; (B^{-1} \gamma_5 B) &= \sum \phi_0(x,0) \gamma_5 \phi_0^\dagger(x,0) + \\ \mathrm{Tr} \; \int d\lambda \rho(\lambda) \; \left[\phi_+(x,\lambda) \phi_-^\dagger(x,\lambda) \left(\frac{i\lambda}{-i\lambda} \frac{1 + e^{i\eta(\lambda)}}{1 + e^{i\eta(-\lambda)}} \right)^{\frac{1}{2}} + \right. \\ \phi_-(x,\lambda) \phi_+^\dagger(x,\lambda) \left(\frac{-i\lambda}{i\lambda} \frac{1 + e^{i\eta(-\lambda)}}{1 + e^{i\eta(\lambda)}} \right)^{\frac{1}{2}} \end{split}$$

Overlap fermions on the lattice

- Again set $\alpha = \infty$
- Need the Blocking transformation, B, and $B^{-1}\gamma_5 B$ to be local, and (prefably) their inverses to exist and be local

$$\psi_C(y) = (D_0(y, y'))^{-\frac{1}{2}} P_C^L(y', x') (D_L(x', x))^{\frac{1}{2}} \psi_L(x)$$

$$\overline{\psi}_C(y) = \overline{\psi}_L(x) (D_L(x', x))^{\frac{1}{2}} \overline{P}_C^L(x', y') (D_0(y', y))^{-\frac{1}{2}}$$

Where (for example)

$$P_C^L(y,x) = \frac{f(x-y)P\left\{e^{i\int_y^x A_{\mu}(w)dw_{\mu}}\right\}}{\sqrt{\int d^4y'P\left\{e^{i\int_{y'}^x A_{\mu}(w)dw_{\mu}}\right\}P\left\{e^{-i\int_{y'}^{x'} A_{\mu}(w)dw_{\mu}}\right\}f(x-y')\overline{f}(x'-y')\delta_{x,x'}}}$$

• Jacobian $+\sum_P e^{i\int A_\mu dw_\mu} \to U \Rightarrow$ lattice artifacts

We can consider an eigenvector blocking for Wilson fermions

$$B = B_d = |\phi_W\rangle \langle \phi_W| \left[\frac{\Lambda}{\lambda} \left(1 + \frac{(\lambda + \Lambda)}{\sqrt{|\lambda + \Lambda|^2}} \right) \right]^{\frac{1}{2}}$$

$$D_N = 1 + \gamma_5 \epsilon (\gamma_5 D_W)$$

The Jacobian and generalised Ginsparg-Wilson relation are

$$\begin{split} e^{-\operatorname{Tr}\,\log\frac{2\Lambda}{D_W}\left(1+\frac{\operatorname{Re}(\lambda)+\Lambda}{\sqrt{|\lambda+\Lambda|^2}}\right)} &= e^{-\operatorname{Tr}\,\log\frac{\Lambda}{D_W}(D_N+D_N^\dagger)} \\ &= e^{c_0+c_fa^4F_{\mu\nu}^2+O(a^6)} \\ \psi &\to e^{i\alpha\hat{\gamma_5}}\psi; \qquad \qquad \overline{\psi} \to \overline{\psi}e^{i\alpha\gamma_5\hat{\gamma_5}\gamma_5} \\ 0 &= D_N\gamma_5\hat{\gamma_5}\gamma_5 + \hat{\gamma_5}D_N \\ \hat{\gamma}_5 &= (D_N)^{\frac{1}{2}}\overline{P}_C^L(D_0^{-1})^{1/2}\gamma_5(D_0)^{\frac{1}{2}}P_C^L(D_N^{-1})^{1/2} = \frac{(D_N)}{\sqrt{D_N^\dagger D_N}}\gamma_4 \end{split}$$

• Recover the cannonical Ginsparg-Wilson relation with a different blocking.

New solutions of the Ginsparg-Wilson operator

 We can also apply a blocking constructed from the overlap eigenvectors:

$$D'_{N} = \frac{1}{s(\gamma_{5}\epsilon)} t \left[\frac{1}{2} (\gamma_{5}\epsilon + \epsilon \gamma_{5}) \right]$$

$$h \left(q \left[\frac{1}{2} (\gamma_{5}\epsilon + \epsilon \gamma_{5}) \right] \left(1 + r \left[\frac{1}{2} (\gamma_{5}\epsilon + \epsilon \gamma_{5}) \right] \gamma_{5}\epsilon \right) \right)$$

• All operators of this form (for r, s, h, q and t analytic and chosen to maintain the continuum limit) are exponentially local (see arXiv:arXiv:0802.0170)

• For example, there (probably) exists an operator where the eigenvalue density matches the continuum

$$D_C = q \left[\frac{1}{2} (\gamma_5 \epsilon (\gamma_5 D_W) + \epsilon (\gamma_5 D_W) \gamma_5) \right]$$

$$\left(1 + \frac{2}{|\gamma_5 \epsilon (\gamma_5 D_W) + \epsilon (\gamma_5 D_W) \gamma_5|} \gamma_5 \epsilon \right)$$

Fixed point and overlap fermions

• Hypothesis: All lattice Dirac operators with an exact chiral symmetry on sufficiently fine lattice spacing are (almost) linked to the the continuum operator with a local and invertible renormilisation group transformation $[\alpha, B]$.

renormilisation group transformation
$$[\alpha,B].$$

$$\int d\psi_0 d\overline{\psi}_0 e^{-(\overline{\psi}_1-\overline{\psi}_0\overline{B})\alpha(\psi_1-B\psi_0)} e^{-\overline{\psi}_0D_C\psi_0-\frac{1}{g_C^2}F_{\mu\nu}^2}$$

$$= e^{C - \frac{1}{g_L^2} a^4 F_{\mu\nu}^2 - \overline{\psi}_1 a D_L \psi_1 + O(a^2)}$$

- Dirac operators without an exact chiral symmetry aren't.
- Overlap-type fermions have $\alpha = \infty$ and an exponentially local B constructed from the eigenvectors of one or more (ultra-)local (Dirac) operators.
- Fixed point fermions in general have $\alpha \neq \infty$ and an exponentially local $[\alpha, B]$ constructed by iterating an ultra-local $[\alpha', B']$.

Conclusions

- The continuum theory can be written in terms of continuum overlap-style fermions, changing the coupling of the Yang-Mills gauge field.
- There is (almost) a local and invertible renormalisation group transformation linking the continuum Dirac operator with the lattice overlap Dirac operator.
- And a multitude of other Ginsparg-Wilson Dirac operators.
- I have derived an expression for a general Ginsparg-Wilson Dirac operator.
- Is it possible to generate a classically perfect action by iterating the Ginsparg-Wilson blocking?