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Lattice Gauge Theory in the LHC era

‣Lattice Gauge Theory (LGT) has been successfully applied 
to a wide range of physics.

‣What can we do using LGT in the LHC era?
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- Strongly interacting gauge theory

- “χ-symmetry” of TC is dynamically broken at ΛTC (as in QCD). 
➡Triggers EW symmetry breaking
➡Weak bosons acquire their masses.

- Typically, mW± = g2 FTC/2 ⇔ FTC ~250 GeV
(FTC:technipion decay constant)
➡ΛTC ~ (FTC / fπ)×ΛQCD~ 2600×ΛQCD

- Elementary scalar is not necessary.
➡No “hierarchy problem”

- Attractive candidate for the Higgs sector in the SM

Technicolor (TC) [Weinberg(1979), Susskind(1979)]
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Two key observables in TC

‣S-parameter [Peskin, Takeuchi 
(1990,1992)]

- tends to be sizably affected in TC.

‣Light pseudo-NG bosons
- often appear with a mass 

detectable in LHC (sometimes 
appear in the excluded region).

10. Electroweak model and constraints on new physics 37

T to vary as well, since T > 0 is expected from a non-degenerate extra family. However,
the data currently favor T < 0, thus strengthening the exclusion limits. A more detailed
analysis is required if the extra neutrino (or the extra down-type quark) is close to
its direct mass limit [208]. This can drive S to small or even negative values but at
the expense of too-large contributions to T . These results are in agreement with a fit
to the number of light neutrinos, Nν = 2.986 ± 0.007 (which favors a larger value for
αs(MZ) = 0.1231 ± 0.0020 mainly from R" and ττ ). However, the S parameter fits are
valid even for a very heavy fourth family neutrino.
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Figure 10.4: 1 σ constraints (39.35 %) on S and T from various inputs combined
with MZ . S and T represent the contributions of new physics only. (Uncertainties
from mt are included in the errors.) The contours assume MH = 117 GeV except
for the central and upper 90% CL contours allowed by all data, which are for
MH = 340 GeV and 1000 GeV, respectively. Data sets not involving MW are
insensitive to U . Due to higher order effects, however, U = 0 has to be assumed in all
fits. αs is constrained using the τ lifetime as additional input in all fits. See full-color
version on color pages at end of book.

There is no simple parametrization that is powerful enough to describe the effects
of every type of new physics on every possible observable. The S, T , and U formalism
describes many types of heavy physics which affect only the gauge self-energies, and it
can be applied to all precision observables. However, new physics which couples directly
to ordinary fermions, such as heavy Z ′ bosons [192] or mixing with exotic fermions [209]
cannot be fully parametrized in the S, T , and U framework. It is convenient to treat these
types of new physics by parameterizations that are specialized to that particular class of
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S-parameter [Peskin, Takeuchi (1990,1992)]

A B

‣Parameterizes “potential new physics contributions” to the EW 
gauge bosons’ self-energy. “Oblique correction”

‣Useful for New Physics search using the EW precision data

Vacuum polarization June 3, 2008

Vacuum polarization

1 Introduction

1.1 S-parameter

Introducing the S, T , U -parameters makes it simple to search for new physics effect using the EW precision
measurement. They are defined by

S = 16π
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Figure 1: Vacuum porlarization graph.

Figure 2: Vacuum porlarization graph.
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An simple example of TC.
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<VV-AA> ⇒ S-parameter
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S-parameter and L10

Interesting scale ~ ΛTC ⇔ Low energy TC⇒ ChPT in TC
‣ In ordinary QCD ChPT [Gasser and Leutwyler (1984,1985)]
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L10: one of LEC’s in ChPT
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FIG. 4: The result with q2
max=2.0 is shown by curves.

O(1/V ) is naively expected [? ]. The lattice spacing
1/a=1.67 GeV could change ± 5 % or more. Although
these systematic errors are yet to be included, we believe
that the error due to the shown above gives the dominant
uncertainty, and quote ∆m2

π=975(30)(67)(166) MeV2 as
our final results, where the first error is statistical, the
second and third ones are due to the chiral extrapolation
and the contribution from the large q2. While this value
is slightly smaller than the experimental value [1261.2
MeV2], it is reasonably consistent with the previous two-
flavor lattice calculation [1131(58) MeV2] [14] within the
uncertainty. To reduce the uncertainties, the calculation
on a finer lattice and smaller quark masses are neces-
sary. Our result for ∆m2

π is not precise, but q2 depen-
dence of ΠV −A is reliable and hence our estimate for
∆m2

π|q2≤2.0=676(50) MeV2 gives the strict lower limit
for the pseudo-NG boson mass.
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G : function of group factors, (18)

T : unbroken gauged generators, (19)

X : broken gauged generators (20)

We have demonstrated the feasibility of the lattice
QCD to calculate L10 and ∆m2

π from the difference of the
VPFs for the vector and axial-vector currents, in which
the exact chiral symmetry plays an important role. While

L10 is determined from the small q2 region of Π(1)
V −A and

hence the discretization error is under good control, ∆m2
π

suffers from the error due to the extrapolation of the data
to large q2 region. While in this letter we focus on the

two quarntities, we can also extract the vacuum expec-
tation values of several operators, which are related to
SχSB, by comparing the data in relatively large q2 re-
gion to the predioction of operator product expansion
of the corresponding correlator [? ]. Furthermore, with
the chiral condensate we can evaluate the strong coupling
constant, gluon condensate and the leading hadronic con-
tribution to lepton’s anomalous magnetic moment. The
results for these quantities and the details of the whole
analysis will be given in a separate publication. While
this work is done with Nc=3 and Nf=2, extending this
to the other sets of (Nc, Nf ) is straightforward, at least,
conceptually.

We thank M. Golterman for useful discussions. This
work is supported in part by the Grant-in-Aid of
the Japanese Ministry of Education (No. 18034011,
18340075, 18740167, 18840045, 19540286, 19740121,
19740160 ). Numerical simulations are performed on Hi-
tachi SR11000 and IBM System Blue Gene Solution at
High Energy Accelerator Research Organization (KEK)
under a support of its Large Scale Simulation Program
(No. 07-16).
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Pseudo NG Boson Mass [Peskin(1980), Preskill(1981)]

‣TC models ⇒ too many NG bosons.

‣One standard wayout : introduce extra gauge symmetry which 
explicitly breaks χ-symmetry.
‣Then NG bosons acquire the mass, and become pseudo-NG.

G : model dependent coefficient
ΠT : VP of currents corresponding to unbroken generators
ΠX : VP of currents corresponding to broken generators 

Once the underlying TC theory is specified, the NP part is 
independent of further details.

5
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Pseudo NG Boson Mass [Peskin(1980), Preskill(1981)]

‣A well known example is the charged pion in QED+QCD theory.

‣QED interaction explicitly breaks chiral symmetry of QCD.
DGMLY sum rule in the chiral limit [Das,Guralnik,Mathur,Low,Young (1967)]

<VV-AA> comes in again.

Spontaneous chiral symmetry breaking (SχSB) of strongly interacting gauge theory may

provide a natural mechanism for the electroweak symmetry breaking. A class of new physics

models based on this idea, so-called the technicolor models, has been studied extensively [1].

In most of those models, massless techni-quarks with weak charge are introduced; the weak

gauge bosons acquire masses from their SχSB. The S-parameter may then be sizably af-

fected, for which those models can be strongly constrained through the electroweak precision

measurements [2]. Another characteristic signal of the technicolor models, that may be ob-

served at the LHC experiments, is the presence of extra Nambu-Goldstone bosons (NGBs)

which are not eaten by the weak gauge bosons. They are called the pseudo-NGBs (pNGBs),

since they must be made massive by introducing explicit breaking of the chiral symmetry of

the techni-quarks in a model dependent way, otherwise they would remain massless. Since

the S-parameter and the pNGB mass are consequences of strong dynamics of the underly-

ing theory, non-perturbative framework is required for their calculation. In previous studies,

some model was involved in the calculation, e.g. [3].

In this work we consider two-flavor QCD as a testing ground of our method and demon-

strate that the first principles calculation of those quantities are possible. In this context, the

S-parameter corresponds to Lr
10 (or lr5 in another convention), one of the low-energy constants

of the chiral perturbation theory (ChPT), as S=−16π[Lr
10(µ) − {ln(µ2/m2

H) − 1/6}/192π2]

with a renormalization scale µ and the Higgs mass mH [2]. Lr
10 is related to a differ-

ence of vacuum polarization functions between vector and axial-vector currents Π(1)
V −A(q2) ≡

Π(1)
V (q2) − Π(1)

A (q2) near the zero momentum insertion. (A formula will be given in (5).)

For the pNGB mass, a mass formula that is valid for a wide range of technicolor models

and breaking patterns is known [4]. The formula contains a nonperturbative part written

in terms of the vacuum polarization functions. The charged pions in two-flavor QCD is an

example of pNGB, as the electromagnetic interaction explicitly breaks SU(2) chiral sym-

metry and gives a finite mass even in the massless limit of up and down quarks [5]. The

corresponding mass formula is known as the DGMLY sum rule [6]

m2
π± = −

3α

4π

∫ ∞

0

dq2 q2 Π(1)
V −A(q2)|mq=0

f 2
, (1)

which gives the mass of charged pions at the leading order of the electromagnetic interaction.

Here f denotes the pion decay constant in the chiral limit. Note that neutral pion is massless

in this limit.
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With different method,
Duncan, Eichten , Thacker(1998), Blum, Doi, Hayakawa, Izubuchi, Yamada(2007),
Namekawa, Kikukawa(2006)
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In this work
‣ Consider two-flavor QCD as TC, and calculate ΠV–A(q2) on the lattice.
‣ Evaluate
✓ L10 (or S-parameter) through

✓mπ±2 (or pseudo-NG boson mass) from

‣ Compare with their experimental values.

Demonstrate the feasibility of the lattice
technique for these quantities.

Vacuum polarization June 3, 2008

Vacuum polarization

1 Introduction

1.1 S-parameter

Introducing the S, T , U -parameters makes it simple to search for new physics effect using the EW precision
measurement. They are defined by

S = −16π





∂
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q2 Π(1)
33

)

∂q2
−

∂
(

q2 Π(1)
3Q

)

∂q2





q2=0

= 16π





∂
(

q2 Π(1)
V V

)

∂q2
−

∂
(

q2 Π(1)
AA

)

∂q2





q2=0

(1)

T =
4π

sin2 θ cos2 θM2
Z

[(

q2 Π(1)
11

)

−
(

q2 Π(1)
33

)]

q2=0
(2)

U = 16π





∂
(

q2 Π(1)
11

)

∂q2
−

∂
(

q2 Π(1)
33

)

∂q2





q2=0

(3)

i
∫

d4x eiq·x〈0 |T [JA,µ(x)JB,ν(0)] | 0〉 =
(

q2 gµν − qµqν

)

Π(1)
AB(q2) − qµqν Π(0)

AB(q2) (4)

(A, B = 3 or Q) (5)

J3,µ =
1

2
(JV,µ − JA,µ) , JQ,µ = JV,µ +

1

2
JY,µ (6)

Π33 =
1

4
(ΠV V + ΠAA) , Π3Q =

1

2
ΠV V (7)

S = 16π





∂
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q2 Π(1)
V V

)

∂q2
−

∂
(

q2 Π(1)
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)

∂q2





q2=0

(8)

Π(1)
V −A(q2) = Π(1)

V V (q2) − Π(1)
AA(q2) (9)

= −
f2

π

q2
− 8 Lr

10(µ) −
ln

(

m2
π

µ2

)

+
1

3
− H(4m2

π/q2)

24π2
(10)

H(x) = (1 + x)

[

√
1 + x ln

(√
1 + x − 1√
1 + x + 1

)

+ 2

]

(11)

Π(1)
V −A(q2) = −

f2
π

q2
− 8 Lr

10(µ) −
ln

(

m2
π

µ2

)

+
1

3
− H(4m2

π/q2)

24π2
(12)

(13)

An simple example of TC.

LTC = ŪLiD/ UL + ŪRiD/ UR + D̄LiD/ DL + D̄RiD/ DR (14)

Qa
L =

(

U
D

)a

L

(Y = 0), Ua
R (Y = 1), Da

R (Y = −1) (15)

gµν − qµqν/q2

q2
[

1 − g2
2 Π(q2)

]

=⇒SχSB gµν − qµqν/q2

q2

[

1 − g2
2

(

F 2
TC

4 q2

)] =
gµν − qµqν/q2

q2 −
(

g2 FTC

2

)2 (16)
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Spontaneous chiral symmetry breaking (SχSB) of strongly interacting gauge theory may

provide a natural mechanism for the electroweak symmetry breaking. A class of new physics

models based on this idea, so-called the technicolor models, has been studied extensively [1].

In most of those models, massless techni-quarks with weak charge are introduced; the weak

gauge bosons acquire masses from their SχSB. The S-parameter may then be sizably af-

fected, for which those models can be strongly constrained through the electroweak precision

measurements [2]. Another characteristic signal of the technicolor models, that may be ob-

served at the LHC experiments, is the presence of extra Nambu-Goldstone bosons (NGBs)

which are not eaten by the weak gauge bosons. They are called the pseudo-NGBs (pNGBs),

since they must be made massive by introducing explicit breaking of the chiral symmetry of

the techni-quarks in a model dependent way, otherwise they would remain massless. Since

the S-parameter and the pNGB mass are consequences of strong dynamics of the underly-

ing theory, non-perturbative framework is required for their calculation. In previous studies,

some model was involved in the calculation, e.g. [3].

In this work we consider two-flavor QCD as a testing ground of our method and demon-

strate that the first principles calculation of those quantities are possible. In this context, the

S-parameter corresponds to Lr
10 (or lr5 in another convention), one of the low-energy constants

of the chiral perturbation theory (ChPT), as S=−16π[Lr
10(µ) − {ln(µ2/m2

H) − 1/6}/192π2]

with a renormalization scale µ and the Higgs mass mH [2]. Lr
10 is related to a differ-

ence of vacuum polarization functions between vector and axial-vector currents Π(1)
V −A(q2) ≡

Π(1)
V (q2) − Π(1)

A (q2) near the zero momentum insertion. (A formula will be given in (5).)

For the pNGB mass, a mass formula that is valid for a wide range of technicolor models

and breaking patterns is known [4]. The formula contains a nonperturbative part written

in terms of the vacuum polarization functions. The charged pions in two-flavor QCD is an

example of pNGB, as the electromagnetic interaction explicitly breaks SU(2) chiral sym-

metry and gives a finite mass even in the massless limit of up and down quarks [5]. The

corresponding mass formula is known as the DGMLY sum rule [6]

m2
π± = −

3α

4π

∫ ∞

0

dq2 q2 Π(1)
V −A(q2)|mq=0

f 2
, (1)

which gives the mass of charged pions at the leading order of the electromagnetic interaction.

Here f denotes the pion decay constant in the chiral limit. Note that neutral pion is massless

in this limit.

2
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‣ In continuum, WT Identity guarantees that〈VV−AA〉vanishes 
if there is no spontaneous nor explicit χ-sym breaking.

‣ If the lattice formulation explicitly breaks χ-sym, it is difficult to 
disentangle the effect of the SχSB from the explicit breaking 
due to the lattice artifact.
‣Exact χ-sym is required in this calculation to extract the physic 

from 〈VV−AA〉. [Sharpe(2007)] 

Overlap fermion formalism

〈VV−AA〉on the lattice
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Simulation Parameters

r0=0.49 fm ⇒ a=0.1184(12)(11) fm  (1/a=1.67(2)(2) GeV)

(L/a)3 x (T/a)=163 × 32 ⇒ V ≈ (1.9 fm)3

‣ lightest pion ⇒ mπ ≈290 MeV, mπ L ≈ 2.8.

‣ Calculation is done in a fixed topological sector Qtop=0.

Fit of Π(0+1)
V −A (Q2) October 22, 2007

where ZV = ZA, and they are the renormalization constants determined non-perturbatively. Then we define

Π(0+1)
V −A (Q2) by

Π(0+1)
V −A (Q2) = Π(0)

V −A(Q2) + Π(1)
V −A(Q2). (24)

Below we focus on the space-like region, and define Q2 = −q2 ≥ 0. It is assumed that q1 and q2 represent
different flavors of quark, but have the same mass, mq. In this note, fπ ∼ 130 MeV normalization is adopted.

S = −16π

[

Lr
10(µ) +

1

192π2

(

ln

(

m2
π

µ2

)

+ 1

)]

, (25)

S =
1

12π

[

l̄5(µ) + ln

(

µ2

m2
H

)

−
1

6

]

, (26)

S = −
1

16π

[

Lr
10(µ) −

1

192π2

{

ln

(

µ2

m2
H

)

−
1

6

}]

, (27)

∆TCmπ
2

= G
∫ ∞

0
dQ2Q2

[

Π(1)
T (Q2) − Π(1)

X (Q2)
]

, (28)

G : function of group factors, (29)

T : unbroken gauged generators, (30)

X : broken gauged generators (31)

β 2.30
# of site 163 × 32
Gauge Iwasaki

+ extra Wilson quarks
+ ghosts (m0 = 1.6)

dynamical and valence quarks overlap (m0 = 1.6)
msea 0.015 0.025 0.035 0.050

# of traj. 10,000 10,000 10,000 10,000

Table 1: Simulation parameters.

Π(0+1)
V −A (Q2) receives both non-perturbative and perturbative contributions. At low Q2, ChPT predicts [1]

at the lowest order

Π(0+1)
V −A (Q2) = −

f2
π

Q2 + m2
π
− 8 Lr

10(µχ) −
1

24π2

[

ln

(

m2
π

µ2
χ

)

+
1

3
− H(Q2)

]

, (32)

where

H(Q2) = z2
[

z ln
(

z − 1

z + 1

)

+ 2
]

with z =

(

1 +
4 m2

π

Q2

)1/2

. (33)

µχ is the renormalization scale in ChPT. On the other hand, at large Q2 the OPE gives [2, 3]

Π(0+1)
V −A (Q2) =

c2

Q2
+

c4

(Q2)2
+

a6(µo) + b6(µo) ln

(

Q2

µ2
o

)

(Q2)3
. (34)

where

c2 = −
1

π2

{

ā +
1

18
(323 − 67 ζ(3) − 5 ζ(5)) ā2

}

m2
q(Q), (35)
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Current correlator in continuum

Fit of Π(0+1)
V −A (Q2) October 20, 2007

Fit of Π(0+1)
V −A (Q2)

1 Definition and asymptotic behavior of Π(0+1)
V −A (Q2)

i
∫

d4x eiq·x〈 0 |T
[

Jµ(x)J†
ν(0)

]

| 0 〉 (1)

=
(

q2gµν − qµqν

)

Π(1)
J (q2) − qµqνΠ

(0)
J (q2), (2)

Jµ(x) =

{

Vµ(x) = q̄1(x)γµq2(x),
Aµ(x) = q̄1(x)γµγ5 q2(x),

(3)

f2
π = ΠV (0) − ΠA(0) (4)

lim
Q2→∞

Q2
[

ΠV (Q2) − ΠA(Q2)
]

→ 0 (5)

S = −4π
d

dQ2

[

ΠV (Q2) − ΠA(Q2)
]

|Q2=0 (6)

∆m2
π =

3αem

4πf2
π

∫ ∞

0
dQ2

[

ΠV (Q2) − ΠA(Q2)
]

(7)

i
∫

d4x eiq·x〈 0 |T
[

Vµ(x)V †
ν (0) − Aµ(x)A†

ν(0)
]

| 0 〉 =
(

q2gµν − qµqν

)

Π(1)
V −A(q2) − qµqνΠ

(0)
V −A(q2), (8)

V a
µ (x) = ZV q̄1(x)γµq2(x), Aa

µ(x) = ZA q̄1(x)γµγ5 q2(x), (9)

where ZV = ZA, and they are the renormalization constants determined non-perturbatively. Then we define

Π(0+1)
V −A (q2) by

Π(0+1)
V −A (q2) = Π(0)

V −A(q2) + Π(1)
V −A(q2). (10)

Below we focus on the space-like region, and define Q2 = −q2 ≥ 0. It is assumed that q1 and q2 represent
different flavors of quark, but have the same mass, mq. In this note, fπ ∼ 130 MeV normalization is adopted.

Π(0+1)
V −A (Q2) receives both non-perturbative and perturbative contributions. At low Q2, ChPT predicts [1]

at the lowest order

Π(0+1)
V −A (Q2) = −

f2
π

Q2 + m2
π
− 8 Lr

10(µχ) −
1

24π2

[

ln

(

m2
π

µ2
χ

)

+
1

3
− H(Q2)

]

, (11)

where

H(Q2) = z2
[

z ln
(

z − 1

z + 1

)

+ 2
]

with z =

(

1 +
4 m2

π

Q2

)1/2

. (12)

µχ is the renormalization scale in ChPT. On the other hand, at large Q2 the OPE gives [2, 3]

Π(0+1)
V −A (Q2) =

c2

Q2
+

c4

(Q2)2
+

a6(µo) + b6(µo) ln

(

Q2

µ2
o

)

(Q2)3
. (13)
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where ZV = ZA, and they are the renormalization constants determined non-perturbatively. Then we define
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V −A (q2) by

Π(0+1)
V −A (q2) = Π(0)

V −A(q2) + Π(1)
V −A(q2). (10)

Below we focus on the space-like region, and define Q2 = −q2 ≥ 0. It is assumed that q1 and q2 represent
different flavors of quark, but have the same mass, mq. In this note, fπ ∼ 130 MeV normalization is adopted.

Π(0+1)
V −A (Q2) receives both non-perturbative and perturbative contributions. At low Q2, ChPT predicts [1]

at the lowest order
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]

with z =

(

1 +
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µχ is the renormalization scale in ChPT. On the other hand, at large Q2 the OPE gives [2, 3]

Π(0+1)
V −A (Q2) =

c2
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+

c4

(Q2)2
+
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where ZV = ZA, and they are the renormalization constants determined non-perturbatively. Then we define
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V −A (q2) by

Π(0+1)
V −A (q2) = Π(0)

V −A(q2) + Π(1)
V −A(q2). (10)

Below we focus on the space-like region, and define Q2 = −q2 ≥ 0. It is assumed that q1 and q2 represent
different flavors of quark, but have the same mass, mq. In this note, fπ ∼ 130 MeV normalization is adopted.

Π(0+1)
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at the lowest order
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+ 2
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µχ is the renormalization scale in ChPT. On the other hand, at large Q2 the OPE gives [2, 3]
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+
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+
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(Q2)3
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‣ The currents are not conserved ones. c.f. [Kikukawa, A. Yamada (1999)] 

‣ Many terms representing lattice artifacts show up.
(only BJ(0) & CJ(1,1) are physically relevant.)

‣ But the exact symmetry between Vμ and Aμ simplifies the analysis!

Current correlator on the lattice
reads

ΠJµν(q̂) =
∑

x

eiq̂·x〈 0| T
[

J (21)
µ (x)J (12)

ν (0)
]

|0 〉

=
∞

∑

n=0

B(n)
J (q̂µ)2nδµν +

∞
∑

n,m=1

C(n,m)
J (q̂µ)2n−1(q̂ν)

2m−1, (2)

where J = V or A. B(n)
J and C(n,m)

J are scalar functions of lattice momentum q̂µ=2πnµ/L

with nµ an integer ranging from −L/2+1 to L/2 (L=16 or 32 for spatial or temporal direc-

tion, respectively). In the continuum limit, only B(0)
J and C(1,1)

J survive. B(0)
J could contain

a power divergent contribution due to a contact term, but the exact symmetry present be-

tween the vector and axial-vector currents guarantees that this contribution cancels in the

difference ΠV µν − ΠAµν . Coefficients other than B(0)
J and C(1,1)

J represent lattice artifacts.

In the difference ΠV µν −ΠAµν , these lattice artifacts are negligible as numerically confirmed

below.

We define a measure of the Lorentz-violating lattice artifacts by

∆J =
∑

µ,ν

q̂µq̂ν

(

1

q̂2
−

q̂ν
∑

λ(q̂λ)3

)

ΠJµν , (3)

which contains all of B(n)
J and C(n,m)

J but B(0)
J nor C(1,1)

J . Figure 1 shows ∆J for J = V

and A (top) and their difference (bottom) as a function of q̂2 at m̂q=0.015. While we

observe statistically significant non-zero values of ∆J depending on q̂2, the difference is

orders of magnitude smaller than the individual ∆J . Similar plot is obtained for m̂q=0.050.

This indicates that the Lorentz-violating lattice artifacts indeed cancel in the difference

ΠV µν − ΠAµν and are insensitive to SχSB or mq.

Neglecting the Lorentz-violating terms, we analyze the difference

ΠV µν − ΠAµν =
(

q̂2δµν − q̂µq̂ν

)

Π(1)
V −A − q̂µq̂νΠ

(0)
V −A, (4)

where Π(1)
V −A and Π(0)

V −A represent the transverse and longitudinal contributions, respectively.

Based on the spectral representation, q2Π(0)
V −A is given by f 2

π m2
π/(q2 + m2

π)+· · · , where the

ellipsis represents the excited state contributions that are of O(m2
q) from the PCAC relation.

Since the excited states are located at large negative values of q2, the pion pole dominates

in the small q2 region. In Fig. 2, the data for q̂2Π(0)
V −A are compared with an expectation

f̂ 2
π m̂2

π/(q̂2 + m̂2
π) constructed from the measured pion mass m̂π and decay constant f̂π in

4

In the continuum theory chiral symmetry guarantees that the difference Π(1)
V −A(q2) exactly

vanishes in the absence of both explicit and spontaneous chiral symmetry breaking. Any

remaining difference in the absence of explicit breaking thus signals the SχSB. Therefore,

the use of exactly chiral fermion formulation is mandatory in the lattice calculation, in order

to avoid fake contributions to Π(1)
V −A(q2) due to non-chiral lattice fermion formulations such

as the Wilson-type fermions. Here we use the overlap fermion [7], which respects exact chiral

symmetry at finite lattice spacings. Employing this fermion, we have successfully done a

precise calculation of the chiral condensate [8], which also requires excellent chiral symmetry

to control systematic errors.

We perform a two-flavor QCD calculation on a 163 × 32 lattice at a lattice spacing a =

0.118(2) fm determined with the Sommer scale r0=0.49 fm as an input [9]. The quark mass

in the lattice unit is m̂q=amq= 0.015, 0.025, 0.035, and 0.050, which roughly cover the range

between 1/6 to 1/2 of the strange quark mass. The global topological charge Q is fixed to

ensure the exact chiral symmetry [9]. The main simulations are done in the Q=0 sector,

using 10,000 trajectories. At m̂q = 0.050, the simulations are also performed in other two

sectors (Q = −2 and −4) to estimate the finite volume effect due to fixing Q [10]. Details of

our configuration generation and the pion spectrum and decay constant analysis are found

in [9] and [11], respectively.

We calculate the current-current correlators for vector and axial-vector currents to

obtain the corresponding vacuum polarization functions. We use as the vector current

V (12)
µ =Z q̄1γµ(1 − aD/2m0)q2, where q1 and q2 represent different flavors of quarks, D the

overlap-Dirac operator in the massless limit, and m0=1.6. The axial-vector current A(12)
µ is

the same but γµ is replaced by γµγ5. The factor (1 − aD/2m0) is necessary to make the

V and A form an exact multiplet under the axial transformation. Because of this exact

symmetry, even the lattice artifacts cancel between V V and AA correlators unless they pick

up the effects of SχSB. The common renormalization constant Z = 1.3842(3) is determined

nonperturbatively [11].

Since the continuous rotational symmetry is violated on the lattice at O(a2) and the

currents we use are not conserved (cf. [12]), the general form of the current-current correlator

3

and similarly defined Aμ(12)

Z=1.3842(3) is common, and determined nonperturbatively.
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Cancellation of the artifacts in ΠV-A

By considering μ=ν and μ≠ν, we extract Π(0)
V−A(q2), Π(1)

V−A(q2)

With our Vμ and Aμ, 〈VV−AA〉exactly vanishes in the absence of 
both explicit and spontaneous breakings as in continuum.

The artifacts arising in short distance vanishes in〈VV−AA〉.

The artifacts coupling to long distance physics are numerically 
investigated, and found to be negligibly small in〈VV−AA〉.

reads

ΠJµν(q̂) =
∑

x

eiq̂·x〈 0| T
[

J (21)
µ (x)J (12)

ν (0)
]

|0 〉

=
∞

∑

n=0

B(n)
J (q̂µ)2nδµν +

∞
∑

n,m=1

C(n,m)
J (q̂µ)2n−1(q̂ν)

2m−1, (2)

where J = V or A. B(n)
J and C(n,m)

J are scalar functions of lattice momentum q̂µ=2πnµ/L

with nµ an integer ranging from −L/2+1 to L/2 (L=16 or 32 for spatial or temporal direc-

tion, respectively). In the continuum limit, only B(0)
J and C(1,1)

J survive. B(0)
J could contain

a power divergent contribution due to a contact term, but the exact symmetry present be-

tween the vector and axial-vector currents guarantees that this contribution cancels in the

difference ΠV µν − ΠAµν . Coefficients other than B(0)
J and C(1,1)

J represent lattice artifacts.

In the difference ΠV µν −ΠAµν , these lattice artifacts are negligible as numerically confirmed

below.

We define a measure of the Lorentz-violating lattice artifacts by

∆J =
∑

µ,ν

q̂µq̂ν

(

1

q̂2
−

q̂ν
∑

λ(q̂λ)3

)

ΠJµν , (3)

which contains all of B(n)
J and C(n,m)

J but B(0)
J nor C(1,1)

J . Figure 1 shows ∆J for J = V

and A (top) and their difference (bottom) as a function of q̂2 at m̂q=0.015. While we

observe statistically significant non-zero values of ∆J depending on q̂2, the difference is

orders of magnitude smaller than the individual ∆J . Similar plot is obtained for m̂q=0.050.

This indicates that the Lorentz-violating lattice artifacts indeed cancel in the difference

ΠV µν − ΠAµν and are insensitive to SχSB or mq.

Neglecting the Lorentz-violating terms, we analyze the difference

ΠV µν − ΠAµν =
(

q̂2δµν − q̂µq̂ν

)

Π(1)
V −A − q̂µq̂νΠ

(0)
V −A, (4)

where Π(1)
V −A and Π(0)

V −A represent the transverse and longitudinal contributions, respectively.

Based on the spectral representation, q2Π(0)
V −A is given by f 2

π m2
π/(q2 + m2

π)+· · · , where the

ellipsis represents the excited state contributions that are of O(m2
q) from the PCAC relation.

Since the excited states are located at large negative values of q2, the pion pole dominates

in the small q2 region. In Fig. 2, the data for q̂2Π(0)
V −A are compared with an expectation

f̂ 2
π m̂2

π/(q̂2 + m̂2
π) constructed from the measured pion mass m̂π and decay constant f̂π in

4

Therefore, we write〈VV−AA〉as
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FIG. 2: Comparison of the data for Π(0)
V −A(q2) and the ex-

pression derived from the spectrum representation (dushed
curves).

where x = 4m2
π/q2, µχ is the renormalization scale set to

µχ ∼ amexp
ρ =0.77 a, corresponding the phyical ρ meson

mass, and

H = z2

[

z ln

(

z − 1

z + 1

)

+ 2

]

, (6)

with z = (1+x)1/2. Using the measured value of the pion

mass and the decay constant, we fit the data of Π(1)
V −A(q2)

to (5) to obtain Lr
10(µχ). While the data at all the four

quark masses are included, the fit range in q2 is set to
[0, q2

max] with varying q2
max. It turns out that the fit in-

cluding only the minimum available q2
max(∼ 0.038) gives

an acceptable χ2/dof(=0.47) and the other choises for
q2
max result in χ2/dof∼ O(40) or more. This is probably

because only the data at the minimum q2 correspond-
ing to (330 MeV)2 is in the NLO ChPT regime whereas
the secondly minimum one corresponding to (650 MeV)2

is not. The quark mass dependence at the minimum
q2 = is shown in Fig. 3 together with the fit results.
From the fit, we obtain Lr

10(mρ) = −5.22(17) × 10−3

(χ2/dof=0.5), is quite in agreement with the experimen-
tal value −5.09(47) × 10−3 [10].

Since our lattice is about (1.9 fm)3 box, the finite vol-
ume effect (FVE) may significantly affect the calculation,
especially for our lighest quarks. In the VPF for the vec-
tor correlator, the π-π loop contributes. We estimate this
loop in (1.9 fm)3 and the infinite volume limit, and the
difference is added to the data. Repeating the above fit,
we obtain Lr

10(mρ)|infinite V = −0.0057(2) (χ2/dof= 2.3)
using the minimum q2. The corrected data and the fit re-
sults are shown in Fig. 3. Taking the difference between
the two results as the systematic error, we quote our best
estimate as Lr

10(mρ) = −5.2(2)(5) × 10−3.
Next we turn to the pseudo-NG boson mass, more

specifically, the electromagnetic (EM) contribution to the
charged-netral pion mass splitting in this case. Since the
EM interaction explicitly violates the chiral symmetry,
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FIG. 3: The quark mass dependence of Π(1)
V −A(q2) at the min-

imum available q2, q2
min=0.038.

some of the NG bosons acquire the mass proportional to
α, the fine structure constant, even in the massless limit
of the quarks. Das et. al. derived an identity, called the
DGMLY sum rule [11], which gives the mass splitting in

the massless limit in terms of the integral of Π(1)
V −A(q2)

as

∆m2
π = −

3α

4πf2
π

∫ ∞

0
dq2 q2 Π(1)

V −A(q2), (7)

and later the formula was extended to general strongly
interacting gauge theories [12]. We fit the data of

Π(1)
V −A(q2) in a certain range of q2. Four slightly dif-

ferent functional forms are attempted in the fit. All of
them contains the three low-lying resonanse poles,

−
f2

π

q2
+

f2
ρ

q2 + m2
ρ

−
f2

a1

q2 + m2
a1

. (8)

Then the other part are given by

−
1

242
π

ln
(

m2

π

µ2
χ

)

+ 1
3 − H(q2) + x6Q2

ρ

1 + x5 (Q2
ρ)

4
, (9)

−
1

242
π

Q2
ρ(x6 + x7 ln(Q2

ρ))

1 + x5(Q2
ρ)

4
, (10)

−
1

24π2

x6 Q2
ρ ln(Q2

ρ)

1 + x5 (Q2
ρ)

4
, (11)

−
1

242
π

ln (1 + x6Q2
ρ)

1 + x5 (Q2
ρ)

3
, (12)

where Q2
ρ = (q2/amexp

ρ ), and xi’s are the free parameters.
While we use the measured values for fπ and m2

π, in order
to minimize the number of the free parameters and make
the integral convergent we impose

fρ = x1 + x3 m2
π, mρ = x2 + x4 m2

π, (13)

fa1 =
√

f2
ρ − f2

π , ma1 =
fρ

fa1
mρ. (14)

L10 from ΠV-A(1)(q2)
•ChPT predicts [Gasser & Leutwyler (1984)]

(x=4mπ2/q2, H(x) is known function.)

2

tum q with C(n,m)
J = C(m,n)

J for n != m. Because
of the use of non-conserved currents and the violation
of the Euclidean symmetry, ΠJ µν is not as simple as

(q2δµν − qµqν)Π(1)
J − qµqνΠ(0)

J , which is reproduced if

B(0)
J → q2Π(1)

J , C(1,1)
J → −(Π(1)

J + Π(0)
J ) and all the oth-

ers vanish. Dimensionless momentum qµ is defined by
qµ=2× sin(πnµ/Lµ), where Lµ is the number of the lat-
tice cites in the µ-direction and nµ an integer varying in
[Lµ/2 − 1, · · · , Lµ/2]. In contrast to the case with con-
served currents, the definition of qµ is ambiguous, so we
only use a subset of all possible momentum configurations
satisfying 2πnµ/Lµ < 1 to minimize the uncertainty due
to this ambiguity. We confirmed that the other choice,
qµ = 2πnµ/Lµ, changes the final results by less than ?
%.

Let us stress that, with a pair of the vector and axial-
vector currents we use, the chiral symmetry still guar-
antees that the difference of the VPFs exactly vanishes
in the absense of any symmetry breaking, which means
that in the massless limit the purely perturbative contri-
butions to (1) exactly cancel in ΠV µν − ΠAµν and non-
zero contributions contains a vacuum expectation value
of operators with dimension six or higher. These non-
zero contributions can be classified into two, one being
the one which has the continuum limit and another be-
ing lattice artifacts. We can check the size of the lattice
artifacts in the difference in the following. First let us
define

∆J =
∑

µ,ν

qµqνΠJµν

(

1

q2
−

qν

Q(3)

)

, (2)

where Q(m) =
∑

λ(qλ)m. Substituting (1) into (2),

∆J =
∞
∑

n=1

B(n)
J

(

Q(2n+2)

q2
−

Q(2n+3)

Q(3)

)

+
∞
∑

n,m=1

C(n,m)
J Q(2n)

(

Q(2m)

q2
−

Q(2m+1)

Q(3)

)

,

(n = m = 1 is not included)

one will see that ∆J does not contain B(0)
J nor C(1,1)

J ,
both of which are physically relevant, and hence only
consists of lattice artifacts. Figure 1 shows the q2 depen-

dence of the indivisual ∆(1)
J for J = V or A and their

difference. It is seen that while the individual ∆(1)
J is of

O(10−?) and depends on q2 sizably (NEED CHECK) the
difference is essentially zero in a wide range of q2. Since

∆(1)
J is actually the very complicated function of artifacts

and qµ and the artifacts are in general expected to depend

on q2 significantly, we can conclude that B(n)
V = B(n)

A and

C(n,m)
V = C(n,m)

A except for B(0)
J and C(1,1)

J .

Since we have confirmed that irrelevant terms in (1)
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FIG. 1: q2 dependence of ∆, which purely consists of the
lattice artifacts. The result for mq=0.015 is shown.

cancel in the difference, we write it as
∫

d4x eiq·x〈 0 |T
[

V ij
µ (x)V ji

ν (0) − Aij
µ (x)Aji

ν (0)
]

| 0 〉

=
(

q2δµν − qµqν

)

Π(1)
V −A − qµqνΠ(0)

V −A.

(3)

Considering (3) with µ = ν and µ != ν, we can extract

Π(1)
V −A and Π(0)

V −A, which are given in terms of the scalar

functions defined in (1) as Π(1)
V −A = B(0)

V − B(0)
A and

Π(0)
V −A = −(B(0)

V − B(0)
A ) − (C(1,1)

V − C(1,1)
A ). While the

individual B(0)
J or C(1,1)

J could suffer from sizable lattice
artifacts, we expect that their differeces between vector
and axial-vector do not. We can demonstrate that it is
indeed the case for Π(0)

V −A. In the Kälen-Lehmann spec-

tral representation, q2Π(0)
V −A is given by

q2Π(0)
V −A(q2) =

f2
π m2

π

q2 + m2
π

. (4)

In Fig. 2, the data of q2Π(0)
V −A(q2) for each quark mass

is compared with the right hand side of (4), in which
the measured pion mass and decay constant are used.

The remakable agreement for q2Π(0)
V −A(q2) shows that the

lattice artifact in this quantity is under good control. We

assume that the same happens for q2Π(1)
V −A(q2).

In the following, we extract L10 and the electromag-
netic contribution to the charged-netral splitting from

Π(1)
V −A(q2) thus obtained. Chiral Perturbation Theory

(ChPT) to the next-to-leading order (NLO) predicts

Π(1)
V −A(q2) as [9]

Π(1)
V −A(q2) = −

f2
π

q2
− 8Lr

10(µχ) −
ln

(

m2

π

µ2
χ

)

+ 1
3 − H(x)

24π2
,

(5)

Fit the data to the ChPT 

prediction using the measured  
fπ and mπ.

L10(mρ)= −5.2(2)(   )(   )×10−3  

(χ2/dof=0.5, 2.3) 

L10(Exp)= −5.09(47)×10−3

+0
-3

+5
-0
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Pseudo-NG boson mass
Integral region is separated at 
q2=2 to avoid discretization 
effects.

‣Small q2 region: Integrate fit func.

Spontaneous chiral symmetry breaking (SχSB) of strongly interacting gauge theory may

provide a natural mechanism for the electroweak symmetry breaking. A class of new physics

models based on this idea, so-called the technicolor models, has been studied extensively [1].

In most of those models, massless techni-quarks with weak charge are introduced; the weak

gauge bosons acquire masses from their SχSB. The S-parameter may then be sizably af-

fected, for which those models can be strongly constrained through the electroweak precision

measurements [2]. Another characteristic signal of the technicolor models, that may be ob-

served at the LHC experiments, is the presence of extra Nambu-Goldstone bosons (NGBs)

which are not eaten by the weak gauge bosons. They are called the pseudo-NGBs (pNGBs),

since they must be made massive by introducing explicit breaking of the chiral symmetry of

the techni-quarks in a model dependent way, otherwise they would remain massless. Since

the S-parameter and the pNGB mass are consequences of strong dynamics of the underly-

ing theory, non-perturbative framework is required for their calculation. In previous studies,

some model was involved in the calculation, e.g. [3].

In this work we consider two-flavor QCD as a testing ground of our method and demon-

strate that the first principles calculation of those quantities are possible. In this context, the

S-parameter corresponds to Lr
10 (or lr5 in another convention), one of the low-energy constants

of the chiral perturbation theory (ChPT), as S=−16π[Lr
10(µ) − {ln(µ2/m2

H) − 1/6}/192π2]

with a renormalization scale µ and the Higgs mass mH [2]. Lr
10 is related to a differ-

ence of vacuum polarization functions between vector and axial-vector currents Π(1)
V −A(q2) ≡

Π(1)
V (q2) − Π(1)

A (q2) near the zero momentum insertion. (A formula will be given in (5).)

For the pNGB mass, a mass formula that is valid for a wide range of technicolor models

and breaking patterns is known [4]. The formula contains a nonperturbative part written

in terms of the vacuum polarization functions. The charged pions in two-flavor QCD is an

example of pNGB, as the electromagnetic interaction explicitly breaks SU(2) chiral sym-

metry and gives a finite mass even in the massless limit of up and down quarks [5]. The

corresponding mass formula is known as the DGMLY sum rule [6]

m2
π± = −

3α

4π

∫ ∞

0

dq2 q2 Π(1)
V −A(q2)|mq=0

f 2
, (1)

which gives the mass of charged pions at the leading order of the electromagnetic interaction.

Here f denotes the pion decay constant in the chiral limit. Note that neutral pion is massless

in this limit.

2

3

ChPT predicts Π(1)
V −A to the next-to-leading order as [13]

Π(1)
V −A(q2) = −

f2
π

q2
− 8Lr

10(µ) −
ln

(

m2
π

µ2

)

+ 1
3 − H(x)

24π2
,

(4)

H(x) = (1 + x)

[√
1 + x ln

(
√

1 + x − 1√
1 + x + 1

)

+ 2

]

, (5)

where x = 4m2
π/q2, and µ is the renormalization scale

and set to the physical ρ meson mass. Using the mea-

sured values, m̂π and f̂π, we fit the data of q̂2Π(1)
V −A

to (4) to obtain Lr
10(mρ) with varying fit ranges in q̂2.

It turns out that the fit including only the data at the
smallest q̂2 (=0.038), corresponding to (320 MeV)2 in
the physical unit, is acceptable (χ2/dof=0.5) and gives
Lr

10(mρ) = −5.22(17) × 10−3 as shown in Fig. 3 (circles
and solid curve), but once the second smallest q̂2, cor-
responding to (650 MeV)2, has been included in the fit
range the fit becomes unacceptable (χ2/dof ∼ O(40)). So
even the smallest q̂2 data may be contaminated by the
higher order in q̂2. We estimate this effect by modifying
the fit function so as to fit over a wide range of q̂2 and
observing how Lr

10 changes. As a result, we obtain the
shift of 0.3×10−3, which is added as the systematic error.
The more details are presented later.

The third term in (4) is a contribution from the pion
loop, and could significantly be affected by the finite vol-
ume as the volume (1.9 fm)3 is not so large. To quantify
this effect, we replace the momentum integral by the sum.
f̂π and m̂π are also corrected following [14]. Taking these
corrections into account, we fit the data at the smallest
q̂2 to (4) and obtained Lr

10(mρ)|V =∞ = −5.74(17)×10−3

with χ2/dof= 2.3, which is shown in Fig. 3 (triangles and
dashed curve). We take the difference between these two
results as the systematic error, and quote

Lr
10(mρ) = −5.2(2)(+0

−3)(
+5
−0) × 10−3, (6)

which agrees with the experimental value −5.09(47)×
10−3 [3].

Next we turn to the charged-neutral pion mass split-
ting, ∆m2

π = m2
π+−m2

π0 . The splitting in the chiral limit
is given by the so-called DGMLY sum rule [15] as

∆m2
π = −

3α

4πf2

∫ ∞

0
dq2 q2 Π(1)

V −A(q2)|mq=0, (7)

where f is the pion decay constant in the chiral limit.
Importantly, for a wide range of technicolor models and
breaking patterns the above formula up to the factor in
the front of the integral is valid [16]. To perform the

numerical integral, we fit the data of q̂2Π(1)
V −A to

q̂2Π(1),fit
V −A (q̂2) = −f̂2

π +
q̂2f̂2

V

q̂2 + m̂2
V

−
q̂2f̂2

A

q̂2 + m̂2
A

−
q̂2

24π2

X(q̂2)

1 + x5 (Q2
ρ)

4
, (8)
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FIG. 3: The quark mass dependence of q̂2Π(1)
V −A|q̂2=0.038 and

the fit result for the finite and infinite volume results.

where Q2
ρ = q̂2/(a2m2

ρ), and X(q̂2) is either

ln

(

m̂2
π

m̂2
ρ

)

+
1

3
− H(4m̂2

π/q̂2) + x6 Q2
ρ, (9)

or x6 Q2
ρ ln(Q2

ρ). (10)

Here and in the following xi denotes a fit parameter. We
have introduced the pole of the lowest-lying state in each
of vector and axial-vector channels. The operator prod-
uct expansion (OPE) predicts that in the chiral limit the

leading contribution of Π(1)
V −A|mq=0 starts from O(q−6)

at large q2 [17]. In order for (8) to be consistent with
this, the forms of X(q̂2) are chosen, and f̂J and m̂J (J
= V and A) are parameterized as

f̂2
π = f̂2

V − f̂2
A, f̂Am̂A = f̂V m̂V , (11)

f̂V = x1 + x3 m̂2
π, m̂V = x2 + x4 m̂2

π. (12)

Note that (11) implements the approximated first and
second Weinberg sum rules [18]. Choosing X(q̂2) to be

(9) Π(1),fit
V −A (q̂2) reproduces the ChPT prediction (4) when

Q2
ρ % 1, while the other does not but gives the best fit

within the several functional forms we have examined.
Since we do not observe sizable discrepancy between

on- and off-axis data up to q̂2 ∼ 3.0, the fit range is
set to q̂2 = [ 0.038, 2.0 ]. Using the measured f̂π and
m̂π, we obtain the results shown in Tab. I and in Fig. 4.
The four parameters x1 to x4 turn out to be stable

for the different choices of X(q̂2). Expanding q̂2Π(1),fit
V −A

around q̂2 = 0 in the chiral limit and comparing with (4),
the correspondence Lr

10(mρ)= −f̂2 (2x2
1− f̂2)/(8x2

1x
2
2) is

seen. Substituting the fit results for (9) to this gives
Lr

10(mρ) = −4.9 × 10−3. The difference from the central
value is added as the systematic error from the higher
order effect, and included in (6).

In order to avoid possibly large discretization effects
in the large q̂2 region, we separate the whole integral re-
gion of (7) into two parts at q̂2=2.0, and estimate each
part as follows. For the first part (q̂2 ≤ 2.0), we use the

•1st and 2nd Weinberg sum rules are imposed.
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where x = 4m2
π/q2, and µ is the renormalization scale

and set to the physical ρ meson mass. Using the mea-

sured values, m̂π and f̂π, we fit the data of q̂2Π(1)
V −A

to (4) to obtain Lr
10(mρ) with varying fit ranges in q̂2.

It turns out that the fit including only the data at the
smallest q̂2 (=0.038), corresponding to (320 MeV)2 in
the physical unit, is acceptable (χ2/dof=0.5) and gives
Lr

10(mρ) = −5.22(17) × 10−3 as shown in Fig. 3 (circles
and solid curve), but once the second smallest q̂2, cor-
responding to (650 MeV)2, has been included in the fit
range the fit becomes unacceptable (χ2/dof ∼ O(40)). So
even the smallest q̂2 data may be contaminated by the
higher order in q̂2. We estimate this effect by modifying
the fit function so as to fit over a wide range of q̂2 and
observing how Lr

10 changes. As a result, we obtain the
shift of 0.3×10−3, which is added as the systematic error.
The more details are presented later.

The third term in (4) is a contribution from the pion
loop, and could significantly be affected by the finite vol-
ume as the volume (1.9 fm)3 is not so large. To quantify
this effect, we replace the momentum integral by the sum.
f̂π and m̂π are also corrected following [14]. Taking these
corrections into account, we fit the data at the smallest
q̂2 to (4) and obtained Lr

10(mρ)|V =∞ = −5.74(17)×10−3

with χ2/dof= 2.3, which is shown in Fig. 3 (triangles and
dashed curve). We take the difference between these two
results as the systematic error, and quote

Lr
10(mρ) = −5.2(2)(+0

−3)(
+5
−0) × 10−3, (6)

which agrees with the experimental value −5.09(47)×
10−3 [3].

Next we turn to the charged-neutral pion mass split-
ting, ∆m2

π = m2
π+−m2

π0 . The splitting in the chiral limit
is given by the so-called DGMLY sum rule [15] as
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V −A(q2)|mq=0, (7)

where f is the pion decay constant in the chiral limit.
Importantly, for a wide range of technicolor models and
breaking patterns the above formula up to the factor in
the front of the integral is valid [16]. To perform the

numerical integral, we fit the data of q̂2Π(1)
V −A to
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FIG. 3: The quark mass dependence of q̂2Π(1)
V −A|q̂2=0.038 and

the fit result for the finite and infinite volume results.
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V −A (q̂2) reproduces the ChPT prediction (4) when
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ρ % 1, while the other does not but gives the best fit

within the several functional forms we have examined.
Since we do not observe sizable discrepancy between

on- and off-axis data up to q̂2 ∼ 3.0, the fit range is
set to q̂2 = [ 0.038, 2.0 ]. Using the measured f̂π and
m̂π, we obtain the results shown in Tab. I and in Fig. 4.
The four parameters x1 to x4 turn out to be stable

for the different choices of X(q̂2). Expanding q̂2Π(1),fit
V −A

around q̂2 = 0 in the chiral limit and comparing with (4),
the correspondence Lr

10(mρ)= −f̂2 (2x2
1− f̂2)/(8x2

1x
2
2) is

seen. Substituting the fit results for (9) to this gives
Lr

10(mρ) = −4.9 × 10−3. The difference from the central
value is added as the systematic error from the higher
order effect, and included in (6).

In order to avoid possibly large discretization effects
in the large q̂2 region, we separate the whole integral re-
gion of (7) into two parts at q̂2=2.0, and estimate each
part as follows. For the first part (q̂2 ≤ 2.0), we use the
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and set to the physical ρ meson mass. Using the mea-

sured values, m̂π and f̂π, we fit the data of q̂2Π(1)
V −A

to (4) to obtain Lr
10(mρ) with varying fit ranges in q̂2.

It turns out that the fit including only the data at the
smallest q̂2 (=0.038), corresponding to (320 MeV)2 in
the physical unit, is acceptable (χ2/dof=0.5) and gives
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10(mρ) = −5.22(17) × 10−3 as shown in Fig. 3 (circles
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responding to (650 MeV)2, has been included in the fit
range the fit becomes unacceptable (χ2/dof ∼ O(40)). So
even the smallest q̂2 data may be contaminated by the
higher order in q̂2. We estimate this effect by modifying
the fit function so as to fit over a wide range of q̂2 and
observing how Lr

10 changes. As a result, we obtain the
shift of 0.3×10−3, which is added as the systematic error.
The more details are presented later.

The third term in (4) is a contribution from the pion
loop, and could significantly be affected by the finite vol-
ume as the volume (1.9 fm)3 is not so large. To quantify
this effect, we replace the momentum integral by the sum.
f̂π and m̂π are also corrected following [14]. Taking these
corrections into account, we fit the data at the smallest
q̂2 to (4) and obtained Lr

10(mρ)|V =∞ = −5.74(17)×10−3

with χ2/dof= 2.3, which is shown in Fig. 3 (triangles and
dashed curve). We take the difference between these two
results as the systematic error, and quote

Lr
10(mρ) = −5.2(2)(+0

−3)(
+5
−0) × 10−3, (6)

which agrees with the experimental value −5.09(47)×
10−3 [3].

Next we turn to the charged-neutral pion mass split-
ting, ∆m2

π = m2
π+−m2

π0 . The splitting in the chiral limit
is given by the so-called DGMLY sum rule [15] as

∆m2
π = −
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4πf2

∫ ∞
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dq2 q2 Π(1)

V −A(q2)|mq=0, (7)

where f is the pion decay constant in the chiral limit.
Importantly, for a wide range of technicolor models and
breaking patterns the above formula up to the factor in
the front of the integral is valid [16]. To perform the

numerical integral, we fit the data of q̂2Π(1)
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FIG. 3: The quark mass dependence of q̂2Π(1)
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the fit result for the finite and infinite volume results.

where Q2
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ρ), and X(q̂2) is either

ln

(

m̂2
π

m̂2
ρ

)

+
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π/q̂2) + x6 Q2
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Here and in the following xi denotes a fit parameter. We
have introduced the pole of the lowest-lying state in each
of vector and axial-vector channels. The operator prod-
uct expansion (OPE) predicts that in the chiral limit the

leading contribution of Π(1)
V −A|mq=0 starts from O(q−6)

at large q2 [17]. In order for (8) to be consistent with
this, the forms of X(q̂2) are chosen, and f̂J and m̂J (J
= V and A) are parameterized as

f̂2
π = f̂2

V − f̂2
A, f̂Am̂A = f̂V m̂V , (11)

f̂V = x1 + x3 m̂2
π, m̂V = x2 + x4 m̂2

π. (12)

Note that (11) implements the approximated first and
second Weinberg sum rules [18]. Choosing X(q̂2) to be

(9) Π(1),fit
V −A (q̂2) reproduces the ChPT prediction (4) when

Q2
ρ % 1, while the other does not but gives the best fit

within the several functional forms we have examined.
Since we do not observe sizable discrepancy between

on- and off-axis data up to q̂2 ∼ 3.0, the fit range is
set to q̂2 = [ 0.038, 2.0 ]. Using the measured f̂π and
m̂π, we obtain the results shown in Tab. I and in Fig. 4.
The four parameters x1 to x4 turn out to be stable

for the different choices of X(q̂2). Expanding q̂2Π(1),fit
V −A

around q̂2 = 0 in the chiral limit and comparing with (4),
the correspondence Lr

10(mρ)= −f̂2 (2x2
1− f̂2)/(8x2

1x
2
2) is

seen. Substituting the fit results for (9) to this gives
Lr

10(mρ) = −4.9 × 10−3. The difference from the central
value is added as the systematic error from the higher
order effect, and included in (6).

In order to avoid possibly large discretization effects
in the large q̂2 region, we separate the whole integral re-
gion of (7) into two parts at q̂2=2.0, and estimate each
part as follows. For the first part (q̂2 ≤ 2.0), we use the
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where x = 4m2
π/q2, and µ is the renormalization scale

and set to the physical ρ meson mass. Using the mea-

sured values, m̂π and f̂π, we fit the data of q̂2Π(1)
V −A

to (4) to obtain Lr
10(mρ) with varying fit ranges in q̂2.

It turns out that the fit including only the data at the
smallest q̂2 (=0.038), corresponding to (320 MeV)2 in
the physical unit, is acceptable (χ2/dof=0.5) and gives
Lr

10(mρ) = −5.22(17) × 10−3 as shown in Fig. 3 (circles
and solid curve), but once the second smallest q̂2, cor-
responding to (650 MeV)2, has been included in the fit
range the fit becomes unacceptable (χ2/dof ∼ O(40)). So
even the smallest q̂2 data may be contaminated by the
higher order in q̂2. We estimate this effect by modifying
the fit function so as to fit over a wide range of q̂2 and
observing how Lr

10 changes. As a result, we obtain the
shift of 0.3×10−3, which is added as the systematic error.
The more details are presented later.

The third term in (4) is a contribution from the pion
loop, and could significantly be affected by the finite vol-
ume as the volume (1.9 fm)3 is not so large. To quantify
this effect, we replace the momentum integral by the sum.
f̂π and m̂π are also corrected following [14]. Taking these
corrections into account, we fit the data at the smallest
q̂2 to (4) and obtained Lr

10(mρ)|V =∞ = −5.74(17)×10−3

with χ2/dof= 2.3, which is shown in Fig. 3 (triangles and
dashed curve). We take the difference between these two
results as the systematic error, and quote

Lr
10(mρ) = −5.2(2)(+0

−3)(
+5
−0) × 10−3, (6)

which agrees with the experimental value −5.09(47)×
10−3 [3].

Next we turn to the charged-neutral pion mass split-
ting, ∆m2

π = m2
π+−m2

π0 . The splitting in the chiral limit
is given by the so-called DGMLY sum rule [15] as

∆m2
π = −
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4πf2

∫ ∞

0
dq2 q2 Π(1)

V −A(q2)|mq=0, (7)

where f is the pion decay constant in the chiral limit.
Importantly, for a wide range of technicolor models and
breaking patterns the above formula up to the factor in
the front of the integral is valid [16]. To perform the

numerical integral, we fit the data of q̂2Π(1)
V −A to
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Here and in the following xi denotes a fit parameter. We
have introduced the pole of the lowest-lying state in each
of vector and axial-vector channels. The operator prod-
uct expansion (OPE) predicts that in the chiral limit the

leading contribution of Π(1)
V −A|mq=0 starts from O(q−6)

at large q2 [17]. In order for (8) to be consistent with
this, the forms of X(q̂2) are chosen, and f̂J and m̂J (J
= V and A) are parameterized as
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Note that (11) implements the approximated first and
second Weinberg sum rules [18]. Choosing X(q̂2) to be

(9) Π(1),fit
V −A (q̂2) reproduces the ChPT prediction (4) when

Q2
ρ % 1, while the other does not but gives the best fit

within the several functional forms we have examined.
Since we do not observe sizable discrepancy between

on- and off-axis data up to q̂2 ∼ 3.0, the fit range is
set to q̂2 = [ 0.038, 2.0 ]. Using the measured f̂π and
m̂π, we obtain the results shown in Tab. I and in Fig. 4.
The four parameters x1 to x4 turn out to be stable

for the different choices of X(q̂2). Expanding q̂2Π(1),fit
V −A

around q̂2 = 0 in the chiral limit and comparing with (4),
the correspondence Lr

10(mρ)= −f̂2 (2x2
1− f̂2)/(8x2

1x
2
2) is

seen. Substituting the fit results for (9) to this gives
Lr

10(mρ) = −4.9 × 10−3. The difference from the central
value is added as the systematic error from the higher
order effect, and included in (6).

In order to avoid possibly large discretization effects
in the large q̂2 region, we separate the whole integral re-
gion of (7) into two parts at q̂2=2.0, and estimate each
part as follows. For the first part (q̂2 ≤ 2.0), we use the

3

ChPT predicts Π(1)
V −A to the next-to-leading order as [13]

Π(1)
V −A(q2) = −

f2
π

q2
− 8Lr

10(µ) −
ln

(

m2
π

µ2

)

+ 1
3 − H(x)

24π2
,

(4)

H(x) = (1 + x)

[√
1 + x ln

(
√

1 + x − 1√
1 + x + 1

)

+ 2

]

, (5)

where x = 4m2
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and set to the physical ρ meson mass. Using the mea-

sured values, m̂π and f̂π, we fit the data of q̂2Π(1)
V −A

to (4) to obtain Lr
10(mρ) with varying fit ranges in q̂2.

It turns out that the fit including only the data at the
smallest q̂2 (=0.038), corresponding to (320 MeV)2 in
the physical unit, is acceptable (χ2/dof=0.5) and gives
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10(mρ) = −5.22(17) × 10−3 as shown in Fig. 3 (circles
and solid curve), but once the second smallest q̂2, cor-
responding to (650 MeV)2, has been included in the fit
range the fit becomes unacceptable (χ2/dof ∼ O(40)). So
even the smallest q̂2 data may be contaminated by the
higher order in q̂2. We estimate this effect by modifying
the fit function so as to fit over a wide range of q̂2 and
observing how Lr

10 changes. As a result, we obtain the
shift of 0.3×10−3, which is added as the systematic error.
The more details are presented later.

The third term in (4) is a contribution from the pion
loop, and could significantly be affected by the finite vol-
ume as the volume (1.9 fm)3 is not so large. To quantify
this effect, we replace the momentum integral by the sum.
f̂π and m̂π are also corrected following [14]. Taking these
corrections into account, we fit the data at the smallest
q̂2 to (4) and obtained Lr

10(mρ)|V =∞ = −5.74(17)×10−3

with χ2/dof= 2.3, which is shown in Fig. 3 (triangles and
dashed curve). We take the difference between these two
results as the systematic error, and quote

Lr
10(mρ) = −5.2(2)(+0
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+5
−0) × 10−3, (6)

which agrees with the experimental value −5.09(47)×
10−3 [3].

Next we turn to the charged-neutral pion mass split-
ting, ∆m2

π = m2
π+−m2

π0 . The splitting in the chiral limit
is given by the so-called DGMLY sum rule [15] as
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π = −

3α

4πf2

∫ ∞
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V −A(q2)|mq=0, (7)

where f is the pion decay constant in the chiral limit.
Importantly, for a wide range of technicolor models and
breaking patterns the above formula up to the factor in
the front of the integral is valid [16]. To perform the
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Here and in the following xi denotes a fit parameter. We
have introduced the pole of the lowest-lying state in each
of vector and axial-vector channels. The operator prod-
uct expansion (OPE) predicts that in the chiral limit the

leading contribution of Π(1)
V −A|mq=0 starts from O(q−6)

at large q2 [17]. In order for (8) to be consistent with
this, the forms of X(q̂2) are chosen, and f̂J and m̂J (J
= V and A) are parameterized as
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Note that (11) implements the approximated first and
second Weinberg sum rules [18]. Choosing X(q̂2) to be

(9) Π(1),fit
V −A (q̂2) reproduces the ChPT prediction (4) when

Q2
ρ % 1, while the other does not but gives the best fit

within the several functional forms we have examined.
Since we do not observe sizable discrepancy between

on- and off-axis data up to q̂2 ∼ 3.0, the fit range is
set to q̂2 = [ 0.038, 2.0 ]. Using the measured f̂π and
m̂π, we obtain the results shown in Tab. I and in Fig. 4.
The four parameters x1 to x4 turn out to be stable

for the different choices of X(q̂2). Expanding q̂2Π(1),fit
V −A

around q̂2 = 0 in the chiral limit and comparing with (4),
the correspondence Lr

10(mρ)= −f̂2 (2x2
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2
2) is

seen. Substituting the fit results for (9) to this gives
Lr

10(mρ) = −4.9 × 10−3. The difference from the central
value is added as the systematic error from the higher
order effect, and included in (6).

In order to avoid possibly large discretization effects
in the large q̂2 region, we separate the whole integral re-
gion of (7) into two parts at q̂2=2.0, and estimate each
part as follows. For the first part (q̂2 ≤ 2.0), we use the
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FIG. 4: The result with q2
max=2.0 is shown by curves.

O(1/V ) is naively expected [? ]. The lattice spacing
1/a=1.67 GeV could change ± 5 % or more. Although
these systematic errors are yet to be included, we believe
that the error due to the shown above gives the dominant
uncertainty, and quote ∆m2

π=975(30)(67)(166) MeV2 as
our final results, where the first error is statistical, the
second and third ones are due to the chiral extrapolation
and the contribution from the large q2. While this value
is slightly smaller than the experimental value [1261.2
MeV2], it is reasonably consistent with the previous two-
flavor lattice calculation [1131(58) MeV2] [14] within the
uncertainty. To reduce the uncertainties, the calculation
on a finer lattice and smaller quark masses are neces-
sary. Our result for ∆m2

π is not precise, but q2 depen-
dence of ΠV −A is reliable and hence our estimate for
∆m2

π|q2≤2.0=676(50) MeV2 gives the strict lower limit
for the pseudo-NG boson mass.

S = −16π

[

Lr
10(µ) +

1

192π2

(

ln

(

m2
π

µ2

)

+ 1

)]

, (15)

S = −
1

16π

[

Lr
10(µ) −

1

192π2

{

ln

(

µ2

m2
H

)

−
1

6

}]

,(16)

m2
PNG = G

∫ ∞

0
dq2q2

[

Π(1)
T (q2) − Π(1)

X (q2)
]

, (17)

G : function of group factors, (18)

T : unbroken gauged generators, (19)

X : broken gauged generators (20)

We have demonstrated the feasibility of the lattice
QCD to calculate L10 and ∆m2

π from the difference of the
VPFs for the vector and axial-vector currents, in which
the exact chiral symmetry plays an important role. While

L10 is determined from the small q2 region of Π(1)
V −A and

hence the discretization error is under good control, ∆m2
π

suffers from the error due to the extrapolation of the data
to large q2 region. While in this letter we focus on the

two quarntities, we can also extract the vacuum expec-
tation values of several operators, which are related to
SχSB, by comparing the data in relatively large q2 re-
gion to the predioction of operator product expansion
of the corresponding correlator [? ]. Furthermore, with
the chiral condensate we can evaluate the strong coupling
constant, gluon condensate and the leading hadronic con-
tribution to lepton’s anomalous magnetic moment. The
results for these quantities and the details of the whole
analysis will be given in a separate publication. While
this work is done with Nc=3 and Nf=2, extending this
to the other sets of (Nc, Nf ) is straightforward, at least,
conceptually.
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tum q with C(n,m)
J = C(m,n)

J for n != m. Because
of the use of non-conserved currents and the violation
of the Euclidean symmetry, ΠJ µν is not as simple as

(q2δµν − qµqν)Π(1)
J − qµqνΠ(0)

J , which is reproduced if

B(0)
J → q2Π(1)

J , C(1,1)
J → −(Π(1)

J + Π(0)
J ) and all the oth-

ers vanish. Dimensionless momentum qµ is defined by
qµ=2× sin(πnµ/Lµ), where Lµ is the number of the lat-
tice cites in the µ-direction and nµ an integer varying in
[Lµ/2 − 1, · · · , Lµ/2]. In contrast to the case with con-
served currents, the definition of qµ is ambiguous, so we
only use a subset of all possible momentum configurations
satisfying 2πnµ/Lµ < 1 to minimize the uncertainty due
to this ambiguity. We confirmed that the other choice,
qµ = 2πnµ/Lµ, changes the final results by less than ?
%.

Let us stress that, with a pair of the vector and axial-
vector currents we use, the chiral symmetry still guar-
antees that the difference of the VPFs exactly vanishes
in the absense of any symmetry breaking, which means
that in the massless limit the purely perturbative contri-
butions to (1) exactly cancel in ΠV µν − ΠAµν and non-
zero contributions contains a vacuum expectation value
of operators with dimension six or higher. These non-
zero contributions can be classified into two, one being
the one which has the continuum limit and another be-
ing lattice artifacts. We can check the size of the lattice
artifacts in the difference in the following. First let us
define

∆J =
∑

µ,ν

qµqνΠJµν

(

1

q2
−

qν

Q(3)

)

, (2)

where Q(m) =
∑

λ(qλ)m. Substituting (1) into (2),

∆J =
∞
∑

n=1

B(n)
J

(

Q(2n+2)

q2
−

Q(2n+3)

Q(3)

)

+
∞
∑

n,m=1

C(n,m)
J Q(2n)

(

Q(2m)

q2
−

Q(2m+1)

Q(3)

)

,

(n = m = 1 is not included)

one will see that ∆J does not contain B(0)
J nor C(1,1)

J ,
both of which are physically relevant, and hence only
consists of lattice artifacts. Figure 1 shows the q2 depen-

dence of the indivisual ∆(1)
J for J = V or A and their

difference. It is seen that while the individual ∆(1)
J is of

O(10−?) and depends on q2 sizably (NEED CHECK) the
difference is essentially zero in a wide range of q2. Since

∆(1)
J is actually the very complicated function of artifacts

and qµ and the artifacts are in general expected to depend

on q2 significantly, we can conclude that B(n)
V = B(n)

A and

C(n,m)
V = C(n,m)

A except for B(0)
J and C(1,1)

J .

Since we have confirmed that irrelevant terms in (1)
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FIG. 1: q2 dependence of ∆, which purely consists of the
lattice artifacts. The result for mq=0.015 is shown.

cancel in the difference, we write it as
∫

d4x eiq·x〈 0 |T
[

V ij
µ (x)V ji

ν (0) − Aij
µ (x)Aji

ν (0)
]

| 0 〉

=
(

q2δµν − qµqν

)

Π(1)
V −A − qµqνΠ(0)

V −A.

(3)

Considering (3) with µ = ν and µ != ν, we can extract

Π(1)
V −A and Π(0)

V −A, which are given in terms of the scalar

functions defined in (1) as Π(1)
V −A = B(0)

V − B(0)
A and

Π(0)
V −A = −(B(0)

V − B(0)
A ) − (C(1,1)

V − C(1,1)
A ). While the

individual B(0)
J or C(1,1)

J could suffer from sizable lattice
artifacts, we expect that their differeces between vector
and axial-vector do not. We can demonstrate that it is
indeed the case for Π(0)

V −A. In the Kälen-Lehmann spec-

tral representation, q2Π(0)
V −A is given by

q2Π(0)
V −A(q2) =

f2
π m2

π

q2 + m2
π

. (4)

In Fig. 2, the data of q2Π(0)
V −A(q2) for each quark mass

is compared with the right hand side of (4), in which
the measured pion mass and decay constant are used.

The remakable agreement for q2Π(0)
V −A(q2) shows that the

lattice artifact in this quantity is under good control. We

assume that the same happens for q2Π(1)
V −A(q2).

In the following, we extract L10 and the electromag-
netic contribution to the charged-netral splitting from

Π(1)
V −A(q2) thus obtained. Chiral Perturbation Theory

(ChPT) to the next-to-leading order (NLO) predicts

Π(1)
V −A(q2) as [9]

Π(1)
V −A(q2) = −

f2
π

q2
− 8Lr

10(µχ) −
ln

(

m2

π

µ2
χ

)

+ 1
3 − H(x)

24π2
,

(5)

4

χ2/dof x1 x2 x3 x4 x5 x6

1.5 0.082(2) 0.36(2) 0.21(2) 0.8(2) 7(2) 0.6(4)

1.1 0.08398(7) 0.359(2) 0.209(3) 1.10(1) 0.00027(6) 0.00032(6)

TABLE I: Fit results with (9) (top) and (10) (bottom).
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FIG. 4: The fit results with (9) (dashed curves) and (10)
(solid curves). The curves in the chiral limit are also shown.

fit results in Tab. I to estimate the integral in the chi-
ral limit, and obtain ∆m2

π|q̂2≤2.0= 676(50) and 811(12)
MeV2 for (9) and (10), respectively. The difference be-
tween these two results arises from the different behavior
around q̂2=0.1–0.2, as seen in Fig. 4. This happens be-
cause (9) takes the log term in ChPT into account while
(10) does not. Recalling that in the determination of Lr

10

the ChPT formula fits only the data at the smallest q̂2

and (10) fits the data better than (9), we take the central
value from the fit with (10), and the difference is taken
as the systematic error due to the chiral extrapolation.

The remaining part of the integral (q̂2 ≥ 2.0) is esti-

mated based on the OPE, which predicts Π(1)
V −A(q2) =

a6/(q2)3 for large q2 up to a log term in the chiral

limit. Assuming Π(1)
V −A|m̂q=0 = a6/(q̂2)3 at q̂2=2, the

fit result with (10) gives a6=−0.0035. But here we use
a phenomenological value of a6 in the range [−0.001,
−0.01] GeV6 [19] to estimate the integral, and obtained
∆m2

π|q2≥2.0= 182(149) MeV2. In addition to the errors
quantified above, many sources of systematic errors still

remain. The topological charge dependence of q̂2Π(1)
V −A

is investigated and is found to be almost absorbed by
that of f̂2

π in (8). However, it should be noted that the

integrand is essentially the ratio q̂2Π(1)
V −A(q2)/f̂2 and the

dominant contribution to ∆m2
π comes from the q̂2 ∼ 0

region. Since the fact that q̂2Π(1)
V −A(0)/f̂2=1 in the chiral

limit would be scarcely affected by other systematic un-
certainties, other systematic errors including that from
fixing topology are expected to be less important than
the quantified errors above. Summing up the two parts,

we obtain

∆m2
π = 993(12)(+ 0

−135)(149) MeV2, (13)

as the splitting in the chiral limit, where the first error is
statistical, the second and third ones are due to the chiral
extrapolation and the uncertainty in a6. Keeping in mind
that the precise value of the splitting in the chiral limit
is not known, our result is reasonably consistent with
the experimental value at the physical quark mass [1261
MeV2].

In this work, we have shown that the S-parameter and
the pNG boson mass in QCD can be calculated using the
lattice QCD with exact chiral symmetry. It is interesting
to extend the calculation to other gauge theories. In
addition to these quantities, we can also calculate a6 and
the strong coupling constant by comparing the data in
the large q2 region to the prediction of the OPE. The
results will be reported in a subsequent paper.

We thank M. Golterman for useful comments. The
work of HF is supported by Nishina Memorial Founda-
tion. This work is supported in part by the Grant-in-Aid
of the Japanese Ministry of Education (Nos. 18034011,
18340075, 18740167, 19740121, 19740160, 20025010,
20340047 ). Numerical simulations are performed on Hi-
tachi SR11000 and IBM System Blue Gene Solution at
High Energy Accelerator Research Organization (KEK)
under a support of its Large Scale Simulation Program
(No. 07-16).

[1] S. Weinberg, Phys. Rev. D 13, 974 (1976); L. Susskind,
Phys. Rev. D 20, 2619 (1979); For a recent review, see,
for example, C. T. Hill and E. H. Simmons, Phys. Rept.
381, 235 (2003) [Erratum-ibid. 390, 553 (2004)].

[2] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964
(1990); Phys. Rev. D 46, 381 (1992).

[3] G. Ecker, arXiv:hep-ph/0702263.
[4] For the argument based on symmetry, see, for example,

T. Blum et al. [RBC Collaboration], Phys. Rev. D 76,
114508 (2007).

[5] For recent works along this line using the Schwinger-
Dyson and Bethe-Salpeter equations, see, M. Harada,
M. Kurachi and K. Yamawaki, Phys. Rev. D 70, 033009
(2004); Prog. Theor. Phys. 115, 765 (2006).

[6] S. R. Sharpe, arXiv:0706.0218.
[7] H. Neuberger, Phys. Lett. B 417, 141 (1998); Phys. Lett.

B 427, 353 (1998).
[8] H. Fukaya et al. [JLQCD and TWQCD collaboration],

Phys. Rev. Lett. 98, 172001 (2007); Phys. Rev. D 76,
054503 (2007); Phys. Rev. D 77, 074503 (2008).

[9] Y. Kikukawa and A. Yamada, Nucl. Phys. B 547, 413
(1999).

[10] J. Noaki et al. [JLQCD Collaboration], PoS LAT2007,
126 (2007).

[11] S. Capitani et al., Phys. Lett. B 468, 150 (1999).
[12] S. Aoki et al. [JLQCD Collaboration], arXiv:0803.3197.
[13] J. Gasser and H. Leutwyler, Annals Phys. 158, 142

(1984); Nucl. Phys. B 250, 465 (1985).

～

4

χ2/dof x1 x2 x3 x4 x5 x6

1.5 0.082(2) 0.36(2) 0.21(2) 0.8(2) 7(2) 0.6(4)

1.1 0.08398(7) 0.359(2) 0.209(3) 1.10(1) 0.00027(6) 0.00032(6)

TABLE I: Fit results with (9) (top) and (10) (bottom).

0 0.5 1 1.5 2

q
2

-0.01

-0.008

-0.006

-0.004

-0.002

0

q
2
 !

V
-A

(1
)

am
q
=0.015

0.025
0.035
0.050

1 1.5 2
-0.0008

-0.0006

-0.0004

-0.0002

0

^

^

FIG. 4: The fit results with (9) (dashed curves) and (10)
(solid curves). The curves in the chiral limit are also shown.
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MeV2 for (9) and (10), respectively. The difference be-
tween these two results arises from the different behavior
around q̂2=0.1–0.2, as seen in Fig. 4. This happens be-
cause (9) takes the log term in ChPT into account while
(10) does not. Recalling that in the determination of Lr
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the ChPT formula fits only the data at the smallest q̂2

and (10) fits the data better than (9), we take the central
value from the fit with (10), and the difference is taken
as the systematic error due to the chiral extrapolation.

The remaining part of the integral (q̂2 ≥ 2.0) is esti-

mated based on the OPE, which predicts Π(1)
V −A(q2) =

a6/(q2)3 for large q2 up to a log term in the chiral

limit. Assuming Π(1)
V −A|m̂q=0 = a6/(q̂2)3 at q̂2=2, the

fit result with (10) gives a6=−0.0035. But here we use
a phenomenological value of a6 in the range [−0.001,
−0.01] GeV6 [19] to estimate the integral, and obtained
∆m2
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remain. The topological charge dependence of q̂2Π(1)
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is investigated and is found to be almost absorbed by
that of f̂2

π in (8). However, it should be noted that the

integrand is essentially the ratio q̂2Π(1)
V −A(q2)/f̂2 and the

dominant contribution to ∆m2
π comes from the q̂2 ∼ 0

region. Since the fact that q̂2Π(1)
V −A(0)/f̂2=1 in the chiral

limit would be scarcely affected by other systematic un-
certainties, other systematic errors including that from
fixing topology are expected to be less important than
the quantified errors above. Summing up the two parts,

we obtain

∆m2
π = 993(12)(+ 0

−135)(149) MeV2, (13)

as the splitting in the chiral limit, where the first error is
statistical, the second and third ones are due to the chiral
extrapolation and the uncertainty in a6. Keeping in mind
that the precise value of the splitting in the chiral limit
is not known, our result is reasonably consistent with
the experimental value at the physical quark mass [1261
MeV2].

In this work, we have shown that the S-parameter and
the pNG boson mass in QCD can be calculated using the
lattice QCD with exact chiral symmetry. It is interesting
to extend the calculation to other gauge theories. In
addition to these quantities, we can also calculate a6 and
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the large q2 region to the prediction of the OPE. The
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fit results in Tab. I to estimate the integral in the chi-
ral limit, and obtain ∆m2

π|q̂2≤2.0= 676(50) and 811(12)
MeV2 for (9) and (10), respectively. The difference be-
tween these two results arises from the different behavior
around q̂2=0.1–0.2, as seen in Fig. 4. This happens be-
cause (9) takes the log term in ChPT into account while
(10) does not. Recalling that in the determination of Lr
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the ChPT formula fits only the data at the smallest q̂2

and (10) fits the data better than (9), we take the central
value from the fit with (10), and the difference is taken
as the systematic error due to the chiral extrapolation.

The remaining part of the integral (q̂2 ≥ 2.0) is esti-

mated based on the OPE, which predicts Π(1)
V −A(q2) =

a6/(q2)3 for large q2 up to a log term in the chiral

limit. Assuming Π(1)
V −A|m̂q=0 = a6/(q̂2)3 at q̂2=2, the

fit result with (10) gives a6=−0.0035. But here we use
a phenomenological value of a6 in the range [−0.001,
−0.01] GeV6 [19] to estimate the integral, and obtained
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π|q2≥2.0= 182(149) MeV2. In addition to the errors
quantified above, many sources of systematic errors still

remain. The topological charge dependence of q̂2Π(1)
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is investigated and is found to be almost absorbed by
that of f̂2

π in (8). However, it should be noted that the

integrand is essentially the ratio q̂2Π(1)
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dominant contribution to ∆m2
π comes from the q̂2 ∼ 0

region. Since the fact that q̂2Π(1)
V −A(0)/f̂2=1 in the chiral

limit would be scarcely affected by other systematic un-
certainties, other systematic errors including that from
fixing topology are expected to be less important than
the quantified errors above. Summing up the two parts,

we obtain

∆m2
π = 993(12)(+ 0

−135)(149) MeV2, (13)

as the splitting in the chiral limit, where the first error is
statistical, the second and third ones are due to the chiral
extrapolation and the uncertainty in a6. Keeping in mind
that the precise value of the splitting in the chiral limit
is not known, our result is reasonably consistent with
the experimental value at the physical quark mass [1261
MeV2].

In this work, we have shown that the S-parameter and
the pNG boson mass in QCD can be calculated using the
lattice QCD with exact chiral symmetry. It is interesting
to extend the calculation to other gauge theories. In
addition to these quantities, we can also calculate a6 and
the strong coupling constant by comparing the data in
the large q2 region to the prediction of the OPE. The
results will be reported in a subsequent paper.
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q2
max χ2/dof x1 x2 x3 x4 x5 x6 x7

fit1 (9)

1.0 0.5 0.085(4) 0.37(3) 0.19(5) 0.9(3) 9(5) 0.6(4)

2.0 1.5 0.082(2) 0.36(2) 0.21(2) 0.8(2) 7(2) 0.6(4)

3.0 3.3 0.081(1) 0.36(1) 0.22(1) 0.6(1) 6(2) 0.5(4)

fit1 (10)

1.0 0.7 0.086(5) 0.37(2) 0.21(6) 1.2(3) 0.007(20) −0.003(17) 0.004(13)

2.0 1.1 0.0840(1) 0.359(2) 0.208(3) 1.10(2) 0.00025(5) 0.0001(1) 0.00027(2)

3.0 2.0 0.0830(7) 0.357(4) 0.207(5) 1.01(9) 0.00008(4) −0.0003(1) 0.00025(2)

fit1 (11)

1.0 0.6 0.086(5) 0.37(3) 0.21(6) 1.2(3) 0.003(6) 0.001(2)

2.0 1.1 0.08398(7) 0.359(2) 0.209(3) 1.10(1) 0.00027(6) 0.00032(6)

3.0 2.2 0.083(2) 0.355(4) 0.21(1) 1.0(2) 0.0001(2) 0.0002(3)

fit1 (12)

1.0 0.6 0.086(5) 0.37(3) 0.21(6) 1.2(3) 0.005(2) 0.001(3)

2.0 1.0 0.084(2) 0.36(2) 0.21(3) 1.1(2) 0.0003(9) 0.0003(2)

3.0 1.8 0.082(3) 0.36(2) 0.21(3) 0.9(1) 0.0004(5) 0.00019(9)

TABLE I: Fit results.

Note that (14) implements the approximated first and
second Weinberg sum rules [13? ] and with these con-
straints (11) behave as ∼ (a + b ln(q2))/(q2)3 in large
q2, which is consistent with the leading behavior in the
operator product expanson [? ].

The six or seven free parameters are then determined
by fitting the data in the range of q2 = [0, q2

max] with
varyin q2

max. In this calculation, the FVE is not corrected

because the integrand is the ratio q2Π(1)
V −A/f2

π and hence
we expect the leading FVE is canceled in the ratio. In
Tab. I the results are shown, and the fit curves are com-
pared with the data in Fig. 4. For q2

max=3.0 the fit is less

acceptable compared with the others, so we omit this case
from the following analysis. The four parameters x1 to
x4 turns out to be stable against the change of the func-
tional forms. It is interesting to see that the numerical
results for x1 (x2), corresponding to 139–145 MeV (334–
367 MeV) in physical unit, is far below the experimental
value, fρ ∼220 MeV (mρ ∼770 MeV). The coefficient of
q2 in (11) can be interpretted as Lr

10. In the chiral limit,
it gives −f2

π (2f2
ρ − f2

π)/(8 f2
ρ m2

ρ)|mq=0 ∼ −0.48 × 10−3,
which reasonably agree with the previous estimate using
the data at minimum available q2 only.

q2
max (9) (10) (11) (12)

1.0 687(64) 772(147) 821(79) 829(83)

2.0 676(50) 786(13) 811(12) 806(49)

TABLE II: ∆m2
π|q2≤2.0 in [MeV]2.

We perfomed the integral in q2 from 0 to 2.0 with
the resulting fit parameters in Tab. I. The results for
∆m2

π|q2≤2.0 is tabulated in Tab. II. Since the differ-
ent q2

max gives consistent results within a given functiona
form, we choose the value q2

max = 2.0 as the statistical er-
ror is under better control. In Tab. II, the result with (9)
gives the smallest value. This is because only (9) takes
the chiral log term into account. Then we take the central
value from the average of the largest (10) and smallest
(9) results, and the difference is considered as the sys-
tematic error due to the chiral extrapolation. Then we

obtain ∆m2
π|q2≤2.0= 743(30)(67) MeV2.

To estimate the contribution above q2 = 2.0, we rely on
the result from the operator product expansion. In the
expansion, ΠV −A(q2) is given by (a6 +(log term))/(q2)3,
and all the values for a6 estimated in the literature is cov-
ered by the range of [−0.001, −0.006] GeV6 [? ]. Using
this value and neglecting the log term contribution, we
estimate ∆m2

π|q2≥2.0= 232(166) MeV2, where the aver-
age and the difference are taken as the central value and
error again. Summing up, our best estimate is ∆m2

π=
975(30)(67)(166) MeV2.

In addition to the error estimated above, there are still
several sources of systematic errors. Since the physical
volume of our lattice is about (1.9 fm)3, the lightest pion
data (∼290 MeV) could receive sizable finite size effect
especially in the the vector-vector correlator, where the
pion-loop comes in. This result is obtained at a fixed
topological sector, so an additional finite size effect of

4

χ2/dof x1 x2 x3 x4 x5 x6

1.5 0.082(2) 0.36(2) 0.21(2) 0.8(2) 7(2) 0.6(4)

1.1 0.08398(7) 0.359(2) 0.209(3) 1.10(1) 0.00027(6) 0.00032(6)

TABLE I: Fit results with (9) (top) and (10) (bottom).
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FIG. 4: The fit results with (9) (dashed curves) and (10)
(solid curves). The curves in the chiral limit are also shown.

fit results in Tab. I to estimate the integral in the chi-
ral limit, and obtain ∆m2

π|q̂2≤2.0= 676(50) and 811(12)
MeV2 for (9) and (10), respectively. The difference be-
tween these two results arises from the different behavior
around q̂2=0.1–0.2, as seen in Fig. 4. This happens be-
cause (9) takes the log term in ChPT into account while
(10) does not. Recalling that in the determination of Lr

10

the ChPT formula fits only the data at the smallest q̂2

and (10) fits the data better than (9), we take the central
value from the fit with (10), and the difference is taken
as the systematic error due to the chiral extrapolation.

The remaining part of the integral (q̂2 ≥ 2.0) is esti-

mated based on the OPE, which predicts Π(1)
V −A(q2) =

a6/(q2)3 for large q2 up to a log term in the chiral

limit. Assuming Π(1)
V −A|m̂q=0 = a6/(q̂2)3 at q̂2=2, the

fit result with (10) gives a6=−0.0035. But here we use
a phenomenological value of a6 in the range [−0.001,
−0.01] GeV6 [19] to estimate the integral, and obtained
∆m2

π|q2≥2.0= 182(149) MeV2. In addition to the errors
quantified above, many sources of systematic errors still

remain. The topological charge dependence of q̂2Π(1)
V −A

is investigated and is found to be almost absorbed by
that of f̂2

π in (8). However, it should be noted that the

integrand is essentially the ratio q̂2Π(1)
V −A(q2)/f̂2 and the

dominant contribution to ∆m2
π comes from the q̂2 ∼ 0

region. Since the fact that q̂2Π(1)
V −A(0)/f̂2=1 in the chiral

limit would be scarcely affected by other systematic un-
certainties, other systematic errors including that from
fixing topology are expected to be less important than
the quantified errors above. Summing up the two parts,

we obtain

∆m2
π = 993(12)(+ 0

−135)(149) MeV2, (13)

as the splitting in the chiral limit, where the first error is
statistical, the second and third ones are due to the chiral
extrapolation and the uncertainty in a6. Keeping in mind
that the precise value of the splitting in the chiral limit
is not known, our result is reasonably consistent with
the experimental value at the physical quark mass [1261
MeV2].

In this work, we have shown that the S-parameter and
the pNG boson mass in QCD can be calculated using the
lattice QCD with exact chiral symmetry. It is interesting
to extend the calculation to other gauge theories. In
addition to these quantities, we can also calculate a6 and
the strong coupling constant by comparing the data in
the large q2 region to the prediction of the OPE. The
results will be reported in a subsequent paper.
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Summary

‣We used overlap fermion to calculate the S-parameter and pNG 
boson mass in 2-flavor QCD. Chiral symmetry on the lattice is 
essential in this calculation.

‣ Both the calculations reasonably reproduced the experimental 
values. Thus the feasibility of the LGT to calculate these quantities 
is demonstrated.

‣ The study of more realistic TC models is an interesting extension.

‣ LGT may be able to directly investigate physical quantities relevant 
for the LHC phenomenology.
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Cancellation of the artifacts in VV-AA
‣ Define a measure of artifacts

In the difference〈VV−AA〉, irrelevant terms cancel!

2

tum q with C(n,m)
J = C(m,n)

J for n != m. Because
of the use of non-conserved currents and the violation
of the Euclidean symmetry, ΠJ µν is not as simple as

(q2δµν − qµqν)Π(1)
J − qµqνΠ(0)

J , which is reproduced if

B(0)
J → q2Π(1)

J , C(1,1)
J → −(Π(1)

J + Π(0)
J ) and all the oth-

ers vanish. Dimensionless momentum qµ is defined by
qµ=2× sin(πnµ/Lµ), where Lµ is the number of the lat-
tice cites in the µ-direction and nµ an integer varying in
[Lµ/2 − 1, · · · , Lµ/2]. In contrast to the case with con-
served currents, the definition of qµ is ambiguous, so we
only use a subset of all possible momentum configurations
satisfying 2πnµ/Lµ < 1 to minimize the uncertainty due
to this ambiguity. We confirmed that the other choice,
qµ = 2πnµ/Lµ, changes the final results by less than ?
%.

Let us stress that, with a pair of the vector and axial-
vector currents we use, the chiral symmetry still guar-
antees that the difference of the VPFs exactly vanishes
in the absense of any symmetry breaking, which means
that in the massless limit the purely perturbative contri-
butions to (1) exactly cancel in ΠV µν − ΠAµν and non-
zero contributions contains a vacuum expectation value
of operators with dimension six or higher. These non-
zero contributions can be classified into two, one being
the one which has the continuum limit and another be-
ing lattice artifacts. We can check the size of the lattice
artifacts in the difference in the following. First let us
define

∆J =
∑

µ,ν

qµqνΠJµν

(

1

q2
−

qν

Q(3)

)

, (2)

where Q(m) =
∑

λ(qλ)m. Substituting (1) into (2), one

will see that ∆J does not contain B(0)
J nor C(1,1)

J , both of
which are physically relevant, and hence only consists of
lattice artifacts. Figure 1 shows the q2 dependence of the

indivisual ∆(1)
J for J = V or A and their difference. It

is seen that while the individual ∆(1)
J is of O(10−?) and

depends on q2 sizably (NEED CHECK) the difference

is essentially zero in a wide range of q2. Since ∆(1)
J is

actually the very complicated function of artifacts and
qµ and the artifacts are in general expected to depend on

q2 significantly, we can conclude that B(n)
V = B(n)

A and

C(n,m)
V = C(n,m)

A except for B(0)
J and C(1,1)

J .
Since we have confirmed that irrelevant terms in (1)

cancel in the difference, we write it as

∫

d4x eiq·x〈 0 |T
[

V ij
µ (x)V ji

ν (0) − Aij
µ (x)Aji

ν (0)
]

| 0 〉

=
(

q2δµν − qµqν

)

Π(1)
V −A − qµqνΠ(0)

V −A. (3)

Considering (3) with µ = ν and µ != ν, we can extract

Π(1)
V −A and Π(0)

V −A, which are given in terms of the scalar

functions defined in (1) as Π(1)
V −A = B(0)

V − B(0)
A and
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FIG. 1: q2 dependence of ∆, which purely consists of the
lattice artifacts. The result for mq=0.015 is shown.
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FIG. 2: Comparison of the data for Π(0)
V −A(q2) and the ex-

pression derived from the spectrum representation (dushed
curves).

Π(0)
V −A = −(B(0)

V − B(0)
A ) − (C(1,1)

V − C(1,1)
A ). While the

individual B(0)
J or C(1,1)

J could suffer from sizable lattice
artifacts, we expect that their differeces between vector
and axial-vector do not. We can demonstrate that it is
indeed the case for Π(0)

V −A. In the Kälen-Lehmann spec-

tral representation, q2Π(0)
V −A is given by

q2Π(0)
V −A(q2) =

f2
π m2

π

q2 + m2
π

. (4)

In Fig. 2, the data of q2Π(0)
V −A(q2) for each quark mass

is compared with the right hand side of (4), in which
the measured pion mass and decay constant are used.

The remakable agreement for q2Π(0)
V −A(q2) shows that the

lattice artifact in this quantity is under good control. We

assume that the same happens for q2Π(1)
V −A(q2).

In the following, we extract L10 and the electromag-
netic contribution to the charged-netral splitting from

2

tum q with C(n,m)
J = C(m,n)

J for n != m. Because
of the use of non-conserved currents and the violation
of the Euclidean symmetry, ΠJ µν is not as simple as

(q2δµν − qµqν)Π(1)
J − qµqνΠ(0)

J , which is reproduced if

B(0)
J → q2Π(1)

J , C(1,1)
J → −(Π(1)

J + Π(0)
J ) and all the oth-

ers vanish. Dimensionless momentum qµ is defined by
qµ=2× sin(πnµ/Lµ), where Lµ is the number of the lat-
tice cites in the µ-direction and nµ an integer varying in
[Lµ/2 − 1, · · · , Lµ/2]. In contrast to the case with con-
served currents, the definition of qµ is ambiguous, so we
only use a subset of all possible momentum configurations
satisfying 2πnµ/Lµ < 1 to minimize the uncertainty due
to this ambiguity. We confirmed that the other choice,
qµ = 2πnµ/Lµ, changes the final results by less than ?
%.

Let us stress that, with a pair of the vector and axial-
vector currents we use, the chiral symmetry still guar-
antees that the difference of the VPFs exactly vanishes
in the absense of any symmetry breaking, which means
that in the massless limit the purely perturbative contri-
butions to (1) exactly cancel in ΠV µν − ΠAµν and non-
zero contributions contains a vacuum expectation value
of operators with dimension six or higher. These non-
zero contributions can be classified into two, one being
the one which has the continuum limit and another be-
ing lattice artifacts. We can check the size of the lattice
artifacts in the difference in the following. First let us
define

∆J =
∑

µ,ν

qµqνΠJµν

(

1

q2
−

qν

Q(3)

)

, (2)

where Q(m) =
∑

λ(qλ)m. Substituting (1) into (2),

∆J =
∞
∑

n=1

B(n)
J

(

Q(2n+2)

q2
−

Q(2n+3)

Q(3)

)

+
∞
∑

n,m=1

C(n,m)
J Q(2n)

(

Q(2m)

q2
−

Q(2m+1)

Q(3)

)

,

(n = m = 1 is not included)

one will see that ∆J does not contain B(0)
J nor C(1,1)

J ,
both of which are physically relevant, and hence only
consists of lattice artifacts. Figure 1 shows the q2 depen-

dence of the indivisual ∆(1)
J for J = V or A and their

difference. It is seen that while the individual ∆(1)
J is of

O(10−?) and depends on q2 sizably (NEED CHECK) the
difference is essentially zero in a wide range of q2. Since

∆(1)
J is actually the very complicated function of artifacts

and qµ and the artifacts are in general expected to depend

on q2 significantly, we can conclude that B(n)
V = B(n)

A and

C(n,m)
V = C(n,m)

A except for B(0)
J and C(1,1)

J .

Since we have confirmed that irrelevant terms in (1)
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FIG. 1: q2 dependence of ∆, which purely consists of the
lattice artifacts. The result for mq=0.015 is shown.

cancel in the difference, we write it as
∫

d4x eiq·x〈 0 |T
[

V ij
µ (x)V ji

ν (0) − Aij
µ (x)Aji

ν (0)
]

| 0 〉

=
(

q2δµν − qµqν

)

Π(1)
V −A − qµqνΠ(0)

V −A. (3)

Considering (3) with µ = ν and µ != ν, we can extract

Π(1)
V −A and Π(0)

V −A, which are given in terms of the scalar

functions defined in (1) as Π(1)
V −A = B(0)

V − B(0)
A and

Π(0)
V −A = −(B(0)

V − B(0)
A ) − (C(1,1)

V − C(1,1)
A ). While the

individual B(0)
J or C(1,1)

J could suffer from sizable lattice
artifacts, we expect that their differeces between vector
and axial-vector do not. We can demonstrate that it is
indeed the case for Π(0)

V −A. In the Kälen-Lehmann spec-

tral representation, q2Π(0)
V −A is given by

q2Π(0)
V −A(q2) =

f2
π m2

π

q2 + m2
π

. (4)

In Fig. 2, the data of q2Π(0)
V −A(q2) for each quark mass

is compared with the right hand side of (4), in which
the measured pion mass and decay constant are used.

The remakable agreement for q2Π(0)
V −A(q2) shows that the

lattice artifact in this quantity is under good control. We

assume that the same happens for q2Π(1)
V −A(q2).

In the following, we extract L10 and the electromag-
netic contribution to the charged-netral splitting from

Π(1)
V −A(q2) thus obtained. Chiral Perturbation Theory

(ChPT) to the next-to-leading order (NLO) predicts

Π(1)
V −A(q2) as [9]

Π(1)
V −A(q2) = −

f2
π

q2
− 8Lr

10(µχ) −
ln

(

m2

π

µ2
χ

)

+ 1
3 − H(x)

24π2
,

(5)

ΔJ entirely consists of lattice artifacts!

2

is set to m̂q=amq=0.015, 0.025, 0.035, and 0.050, which
roughly covers 1/6 to 1/2 of the strange quark mass.
To accelerate the numerical simulation, we fix the global
topological charge Q. The main calculation is done in the
Q=0 sector. We accumulate 10,000 trajectories at each
sea quark mass. The results from the other two sectors
(Q = −2 and −4) with 5,000 trajectories each are used to
estimate the systematic error due to fixing Q. Details of
our configurations and the pion spectrum and the decay
constant from the same ensemble appear in [12] and [10],
respectively.

Since the vector and axial-vector currents defined
above are not conserved and the continuous rotational
symmetry is violated on the lattice, the general form of
the current-current correlator is written as

ΠJ µν(q̂) =
∑

x

eiq̂·x〈 0|T
[

J21
µ (x)J12

ν (0)
]

|0 〉

=
∞
∑

n=0

B(n)
J (q̂µ)2nδµν +

∞
∑

n,m=1

C(n,m)
J (q̂µ)2n−1(q̂ν)2m−1, (1)

where J = V or A, B(n)
J and C(n,m)

J are scalar functions
of lattice momentum q̂µ=2πnµ/Lµ, nµ being an integer
in the range [−Lµ/2+1, Lµ/2]. From the comparison of

(1) to the continuum expression, only B(0)
J and C(1,1)

J are
physically relevant while all the other terms are lattice
artifacts. These artifacts are numerically negligible in the
difference ΠV µν−ΠAµν as explained in the following. We
define a measure of the lattice artifact by

∆J =
∑

µ,ν

q̂µq̂ν

(

1

q̂2
−

q̂ν
∑

λ(q̂λ)3

)

ΠJµν . (2)

Substituting (1) into (2), one can see that ∆J contains

all of B(n)
J and C(n,m)

J except B(0)
J nor C(1,1)

J . Figure 1
shows the q̂2 dependence of ∆J for J = V and A (top)
and their difference (bottom) at the lightest quark mass
(m̂q=0.015). It is seen that the individual ∆J takes non-
zero value and depends on q̂2 but the difference is essen-
tially zero independently of q̂2. The same features are
observed at m̂q=0.050. Since ∆J is a complicated func-
tion of artifacts and momentum, we may conclude that

B(n)
V = B(n)

A and C(n,m)
V = C(n,m)

A except for B(0)
J and

C(1,1)
J . Since the above vector and axial-vector currents

form an exact multiplet for the axial transformation, even
the lattice artifacts for vector and axial-vector must be
equal if there is no chiral symmetry breaking. Therefore
the observation that the equality holds in spite of the
SχSB and finite mq suggests that the lattice artifacts are
dominated by a short-distance contribution.

Since the lattice artifact in (1) cancels in the difference
V − A, we write the difference as

ΠV µν − ΠAµν =
(

q̂2δµν − q̂µq̂ν

)

Π(1)
V −A − q̂µq̂νΠ(0)

V −A. (3)
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FIG. 1: q̂2 dependence of ∆J (J = V or A) (top) and their
difference (bottom). The result for m̂q=0.015 is shown.
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FIG. 2: Comparison of the data for q̂2Π(0)
V −A and f̂2

π m̂2
π/(q̂2 +

m̂2
π) using the measured pion mass and decay constant.

Based on the spectral representation, q2Π(0)
V −A is given by

f2
π m2

π/(q2 + m2
π)+· · · , where the ellipsis denotes the ex-

cited state contributions and is required to be of O(m2
q)

from the PCAC relation. Since the poles of excited
states are located at large negative values of q2, the
pion pole term dominates the others in the small q2 re-

gion. In Fig. 2, the data for q̂2Π(0)
V −A are compared with

f̂2
π m̂2

π/(q̂2 + m̂2
π) using the measured pion mass m̂π and

decay constant f̂π in the lattice unit. We observe that
the lattice data are in fact saturated by the pion pole

contribution to an excellent precision. Since Π(0)
V −A =

−(B(0)
V −B(0)

A )−(C(1,1)
V −C(1,1)

A ) and Π(1)
V −A=B(0)

V −B(0)
A ,

it is very unlikely that only Π(1)
V −A suffers from sizable lat-

tice artifacts. Therefore in the following we assume that

the artifact in Π(1)
V −A is also under control to the same

extent as that in Π(0)
V −A.

Using the data for Π(1)
V −A, we first calculate Lr

10(µ).

Results at mq=0.015 is shown.
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FIG. 2: Comparison of the data for Π(0)
V −A(q2) and the ex-

pression derived from the spectrum representation (dushed
curves).

where x = 4m2
π/q2, µχ is the renormalization scale set to

µχ ∼ amexp
ρ =0.77 a, corresponding the phyical ρ meson

mass, and

H = z2

[

z ln

(

z − 1

z + 1

)

+ 2

]

, (6)

with z = (1+x)1/2. Using the measured value of the pion

mass and the decay constant, we fit the data of Π(1)
V −A(q2)

to (5) to obtain Lr
10(µχ). While the data at all the four

quark masses are included, the fit range in q2 is set to
[0, q2

max] with varying q2
max. It turns out that the fit in-

cluding only the minimum available q2
max(∼ 0.038) gives

an acceptable χ2/dof(=0.47) and the other choises for
q2
max result in χ2/dof∼ O(40) or more. This is probably

because only the data at the minimum q2 correspond-
ing to (330 MeV)2 is in the NLO ChPT regime whereas
the secondly minimum one corresponding to (650 MeV)2

is not. The quark mass dependence at the minimum
q2 = is shown in Fig. 3 together with the fit results.
From the fit, we obtain Lr

10(mρ) = −5.22(17) × 10−3

(χ2/dof=0.5), is quite in agreement with the experimen-
tal value −5.09(47) × 10−3 [10].

Since our lattice is about (1.9 fm)3 box, the finite vol-
ume effect (FVE) may significantly affect the calculation,
especially for our lighest quarks. In the VPF for the vec-
tor correlator, the π-π loop contributes. We estimate this
loop in (1.9 fm)3 and the infinite volume limit, and the
difference is added to the data. Repeating the above fit,
we obtain Lr

10(mρ)|infinite V = −0.0057(2) (χ2/dof= 2.3)
using the minimum q2. The corrected data and the fit re-
sults are shown in Fig. 3. Taking the difference between
the two results as the systematic error, we quote our best
estimate as Lr

10(mρ) = −5.2(2)(5) × 10−3.
Next we turn to the pseudo-NG boson mass, more

specifically, the electromagnetic (EM) contribution to the
charged-netral pion mass splitting in this case. Since the
EM interaction explicitly violates the chiral symmetry,
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FIG. 3: The quark mass dependence of Π(1)
V −A(q2) at the min-

imum available q2, q2
min=0.038.

some of the NG bosons acquire the mass proportional to
α, the fine structure constant, even in the massless limit
of the quarks. Das et. al. derived an identity, called the
DGMLY sum rule [11], which gives the mass splitting in

the massless limit in terms of the integral of Π(1)
V −A(q2)

as

∆m2
π = −

3α

4πf2
π

∫ ∞

0
dq2 q2 Π(1)

V −A(q2), (7)

and later the formula was extended to general strongly
interacting gauge theories [12]. We fit the data of

Π(1)
V −A(q2) in a certain range of q2. Four slightly dif-

ferent functional forms are attempted in the fit. All of
them contains the three low-lying resonanse poles,

−
f2

π

q2
+

f2
ρ

q2 + m2
ρ

−
f2

a1

q2 + m2
a1

. (8)

Then the other part are given by

−
1

242
π

ln
(

m2

π

µ2
χ

)

+ 1
3 − H(q2) + x6Q2

ρ

1 + x5 (Q2
ρ)

4
, (9)

−
1

242
π

Q2
ρ(x6 + x7 ln(Q2

ρ))

1 + x5(Q2
ρ)

4
, (10)

−
1

24π2

x6 Q2
ρ ln(Q2

ρ)

1 + x5 (Q2
ρ)

4
, (11)

−
1

242
π

ln (1 + x6Q2
ρ)

1 + x5 (Q2
ρ)

3
, (12)

where Q2
ρ = (q2/amexp

ρ ), and xi’s are the free parameters.
While we use the measured values for fπ and m2

π, in order
to minimize the number of the free parameters and make
the integral convergent we impose

fρ = x1 + x3 m2
π, mρ = x2 + x4 m2

π, (13)

fa1 =
√

f2
ρ − f2

π , ma1 =
fρ

fa1
mρ. (14)

ΠV-A(0)(q2)

•The obtained ΠV-A(0)(q2) is 
compared to the spectral rep.

•For fπ and mπ, the measured 
values are used.

In the spectral representation,

q2Π(0)
V−A(q2) =

f2
πm2

π

q2 + m2
π

+ (excited states ∼ O(m2
q))
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