S-parameter & pseudo-NG boson mass from lattice QCD

[arXiv:0806.4222]

Norikazu Yamada (KEK,GUAS) for JLQCD & TWQCD Collaboration

Lattice 2008@the College of William and Mary, Williamsburg, Virginia, USA, 2008 July 14–19.

Collaboration with

KEK: S. Hashimoto, T. Kaneko, H. Matsufuru, J. Noaki, E. Shintani Tsukuba: S. Aoki NBI: H. Fukaya (KEK) YITP: T. Onogi National Taiwan: T.W. Chiu Academia Sinica: T.H. Hsieh

within stand & Advertise

Lattice Gauge Theory in the LHC era

Lattice Gauge Theory (LGT) has been successfully applied to a wide range of physics.

What can we do using LGT in the LHC era?

Technicolor (TC) [Weinberg(1979), Susskind(1979)]

- Strongly interacting gauge theory
- "χ-symmetry" of TC is dynamically broken at Λ_{TC} (as in QCD).
 Triggers EW symmetry breaking
 Weak bosons acquire their masses.
- Typically, $m_W^{\pm} = g_2 F_{TC}/2 \Leftrightarrow F_{TC} \sim 250 \text{ GeV}$ (F_{TC} :technipion decay constant) $\Rightarrow \Lambda_{TC} \sim (F_{TC} / f_{\pi}) \times \Lambda_{QCD} \sim 2600 \times \Lambda_{QCD}$
- Elementary scalar is not necessary.
 No "hierarchy problem"
- Attractive candidate for the Higgs sector in the SM

Two key observables in TC

- S-parameter [Peskin, Takeuchi (1990, 1992)]
- tends to be sizably affected in TC.
- Light pseudo-NG bosons
- often appear with a mass detectable in LHC (sometimes appear in the excluded region).

5

S-parameter [Peskin, Takeuchi (1990, 1992)]

- Parameterizes "potential new physics contributions" to the EW gauge bosons' self-energy. "Oblique correction"
- Useful for New Physics search using the EW precision data

$$S = 16\pi \left[\frac{\partial \left[q^2 \left(\Pi_{VV}^{(1)} - \Pi_{AA}^{(1)} \right) \right]}{\partial q^2} \right]_{q^2 = 0}$$

$$i \int d^4x \, e^{iq \cdot x} \langle 0 \, | \, T \left[J_{A,\mu}(x) J_{B,\nu}(0) \right] \, | \, 0 \rangle = \left(g_{\mu\nu} \, q^2 - q_\mu q_\nu \right) \Pi^{(1)}_{AB}(q^2) - q_\mu q_\nu \, \Pi^{(0)}_{AB}(q^2)$$

 $\langle VV - AA \rangle \Rightarrow S$ -parameter

S-parameter and L_{10}

Interesting scale ~ $\Lambda_{TC} \Leftrightarrow$ Low energy TC \Rightarrow ChPT in TC In ordinary QCD ChPT [Gasser and Leutwyler (1984,1985)]

$$\begin{aligned} \Pi_{V-A}^{(1)}(q^2) &= \Pi_{VV}^{(1)}(q^2) - \Pi_{AA}^{(1)}(q^2) \\ &= -\frac{f_\pi^2}{q^2} - 8L_{10}^r(\mu) - \frac{\ln\left(\frac{m_\pi^2}{\mu^2}\right) + \frac{1}{3} - H(4m_\pi^2/q^2)}{24\pi^2} \\ H(x) &= (1+x)\left[\sqrt{1+x}\ln\left(\frac{\sqrt{1+x}-1}{\sqrt{1+x}+1}\right) + 2\right] \end{aligned}$$

Reinterpret $QCD \rightarrow TC$, and substitute the result

$$S = -16\pi \left[L_{10}^r(\mu) - \frac{1}{192\pi^2} \left\{ \ln \left(\frac{\mu^2}{m_H^2} \right) - \frac{1}{6} \right\} \right]$$

Therefore determining L_{10} is equivalent to determining S-parameter.

Pseudo NG Boson Mass [Peskin(1980), Preskill(1981)]

TC models \Rightarrow too many NG bosons.

- One standard wayout : introduce extra gauge symmetry which explicitly breaks χ-symmetry.
- Then NG bosons acquire the mass, and become pseudo-NG.

$$m_{\rm PNG}^2 = G \, \int_0^\infty dq^2 q^2 \left[\Pi_T^{(1)}(q^2) - \Pi_X^{(1)}(q^2) \right]$$

G: model dependent coefficient

 Π_T :VP of currents corresponding to unbroken generators Π_X :VP of currents corresponding to broken generators

Once the underlying TC theory is specified, the NP part is independent of further details.

Pseudo NG Boson Mass [Peskin(1980), Preskill(1981)]

A well known example is the charged pion in QED+QCD theory.
 QED interaction explicitly breaks chiral symmetry of QCD.
 DGMLY sum rule in the chiral limit [Das,Guralnik,Mathur,Low,Young (1967)]

$$m_{\pi^{\pm}}^2 = -\frac{3\alpha}{4\pi} \int_0^\infty dq^2 \, \frac{q^2 \,\Pi_{V-A}^{(1)}(q^2)|_{m_q=0}}{f^2}$$

<VV-AA> comes in again.

With different method, Duncan, Eichten , Thacker (1998), Blum, Doi, Hayakawa, Izubuchi, Yamada (2007), Namekawa, Kikukawa (2006)

In this work

- Consider two-flavor QCD as TC, and calculate $\Pi_{V-A}(q^2)$ on the lattice.
- Evaluate
 - $\checkmark L_{10}$ (or S-parameter) through

$$\Pi_{V-A}^{(1)}(q^2) = -\frac{f_\pi^2}{q^2} - 8L_{10}^r(\mu) - \frac{\ln\left(\frac{m_\pi^2}{\mu^2}\right) + \frac{1}{3} - H(4m_\pi^2/q^2)}{24\pi^2}$$

 $\checkmark m_{\pi^{\pm 2}}$ (or pseudo-NG boson mass) from

$$m_{\pi^{\pm}}^{2} = -\frac{3\alpha}{4\pi} \int_{0}^{\infty} dq^{2} \, \frac{q^{2} \, \Pi_{V-A}^{(1)}(q^{2})|_{m_{q}=0}}{f^{2}}$$

Compare with their experimental values.

Demonstrate the feasibility of the lattice technique for these quantities.

$\langle VV-AA \rangle$ on the lattice

- In continuum, WT Identity guarantees that $\langle VV-AA \rangle$ vanishes if there is no spontaneous nor explicit χ -sym breaking.
- If the lattice formulation explicitly breaks χ-sym, it is difficult to disentangle the effect of the SχSB from the explicit breaking due to the lattice artifact.

Exact χ -sym is required in this calculation to extract the physic from $\langle VV-AA \rangle$. [Sharpe(2007)]

Overlap fermion formalism

Simulation Parameters

(
β	2.30
# of site	$16^3 \times 32$
Gauge	Iwasaki
	+ extra Wilson quarks
	+ ghosts $(m_0 = 1.6)$
dynamical and valence quarks	overlap ($m_0 = 1.6$)
$m_{\rm sea}$	0.015 0.025 0.035 0.050
# of traj.	10,000 10,000 10,000 10,000

r₀=0.49 fm ⇒ a=0.1184(12)(11) fm (1/a=1.67(2)(2) GeV) (L/a)³ x (T/a)=16³ × 32 ⇒ V ≈ (1.9 fm)³

▶ lightest pion $\Rightarrow m_{\pi} \approx 290 \text{ MeV}, m_{\pi} L \approx 2.8.$

• Calculation is done in a fixed topological sector $Q_{top}=0$.

Current correlator in continuum

Harder and the second of the s

$$i \int d^4x \, e^{iq \cdot x} \langle 0 \, | \, T \left[J_\mu(x) J_\nu^\dagger(0) \right] \, | \, 0 \, \rangle = \left(q^2 g_{\mu\nu} - q_\mu q_\nu \right) \Pi_J^{(1)}(q^2) - q_\mu q_\nu \Pi_J^{(0)}(q^2),$$
$$J_\mu(x) = \begin{cases} V_\mu(x) = \bar{q}_1(x) \gamma_\mu q_2(x), \\ A_\mu(x) = \bar{q}_1(x) \gamma_\mu \gamma_5 q_2(x), \end{cases}$$

Current correlator on the lattice

$$\Pi_{J\mu\nu}(\hat{q}) = \sum_{x} e^{i\hat{q}\cdot x} \langle 0| T \left[J_{\mu}^{(21)}(x) J_{\nu}^{(12)}(0) \right] |0\rangle$$

$$= \sum_{n=0}^{\infty} B_{J}^{(n)}(\hat{q}_{\mu})^{2n} \delta_{\mu\nu} + \sum_{n,m=1}^{\infty} C_{J}^{(n,m)}(\hat{q}_{\mu})^{2n-1} (\hat{q}_{\nu})^{2m-1}$$

 $V^{(12)}_{\mu} = Z \bar{q}_1 \gamma_{\mu} (1 - aD/2m_0) q_2$ and similarly defined $A_{\mu}^{(12)}$ Z=1.3842(3) is common, and determined nonperturbatively.

- The currents are not conserved ones. c.f. [Kikukawa, A. Yamada (1999)]
- Many terms representing lattice artifacts show up. (only $B_J^{(0)}$ & $C_J^{(1,1)}$ are physically relevant.)
- But the exact symmetry between V_{μ} and A_{μ} simplifies the analysis!

Cancellation of the artifacts in Π_{V-A}

With our V_{μ} and A_{μ} , $\langle VV-AA \rangle$ exactly vanishes in the absence of both explicit and spontaneous breakings as in continuum.

The artifacts arising in short distance vanishes in $\langle VV-AA \rangle$.

The artifacts coupling to long distance physics are numerically investigated, and found to be negligibly small in $\langle VV-AA \rangle$.

Therefore, we write $\langle VV-AA \rangle$ as $\Pi_{V\mu\nu} - \Pi_{A\mu\nu} = \left(\hat{q}^2 \delta_{\mu\nu} - \hat{q}_{\mu} \hat{q}_{\nu} \right) \Pi_{V-A}^{(1)} - \hat{q}_{\mu} \hat{q}_{\nu} \Pi_{V-A}^{(0)}$ By considering $\mu = \nu$ and $\mu \neq \nu$, we extract $\Pi_{V-A}^{(0)}(q^2)$, $\Pi_{V-A}^{(1)}(q^2)$

L_{10} from $\Pi_{V-A}^{(1)}(q^2)$

• ChPT predicts [Gasser & Leutwyler (1984)]

$$\Pi_{V-A}^{(1)}(q^2) = -\frac{f_\pi^2}{q^2} - 8L_{10}^r(\mu_\chi) - \frac{\ln\left(\frac{m_\pi^2}{\mu_\chi^2}\right) + \frac{1}{3} - H(x)}{24\pi^2}$$

 $(x=4m\pi^2/q^2, H(x) \text{ is known function.})$

Fit the data to the ChPT prediction using the measured f_{π} and m_{π} .

$$L_{10}(Exp) = -5.09(47) \times 10^{-3}$$

Pseudo-NG boson mass

$$m_{\pi^{\pm}}^{2} = -\frac{3\alpha}{4\pi} \int_{0}^{\infty} dq^{2} \, \frac{q^{2} \, \Pi_{V-A}^{(1)}(q^{2})|_{m_{q}=0}}{f^{2}}$$

Integral region is separated at $q^2=2$ to avoid discretization effects.

Small q^2 region: Integrate fit func.

Functional forms adopted :

$$\hat{q}^2 \Pi_{V-A}^{(1),\text{fit}}(\hat{q}^2) = -\hat{f}_{\pi}^2 + \frac{\hat{q}^2 \hat{f}_V^2}{\hat{q}^2 + \hat{m}_V^2} - \frac{\hat{q}^2 \hat{f}_A^2}{\hat{q}^2 + \hat{m}_A^2} - \frac{\hat{q}^2}{24\pi^2} \frac{X(\hat{q}^2)}{1 + x_5 (Q_{\rho}^2)^4},$$
where $Q_{\rho}^2 = \hat{q}^2/(a^2 m_{\rho}^2)$

• Ist and 2nd Weinberg sum rules are imposed.

 $\hat{f}_{\pi}^{2} = \hat{f}_{V}^{2} - \hat{f}_{A}^{2}, \quad \hat{f}_{A}\hat{m}_{A} = \hat{f}_{V}\hat{m}_{V},$ $\hat{f}_{V} = x_{1} + x_{3}\,\hat{m}_{\pi}^{2}, \quad \hat{m}_{V} = x_{2} + x_{4}\,\hat{m}_{\pi}^{2}$

• $X(q^2)$ are chosen to be consistent with the ChPT (OPE) prediction in small (large) q².

$$X(q^2) = \begin{cases} \ln\left(\frac{\hat{m}_{\pi}^2}{\hat{m}_{\rho}^2}\right) + \frac{1}{3} - H(4\hat{m}_{\pi}^2/\hat{q}^2) + x_6 Q_{\rho}^2\\ x_6 Q_{\rho}^2 \ln(Q_{\rho}^2). \end{cases}$$

Pseudo-NG boson mass

• Small q^2 region: Integrate fit func. $\Delta m_{\pi}^2|_{\hat{q}^2 \leq 2.0} = 676(50)$ and $811(12) \,\mathrm{MeV^2}$ • Large q^2 region: OPE predicts $\Pi_{V-A}^{(1)}(q^2) \sim a_6/(q^2)^3$ $a_6 = [-0.001, -0.01] \,\mathrm{GeV^6}$ $\Delta m_{\pi}^2|_{q^2 \geq 2.0} = 182(149) \,\mathrm{MeV^2}$

 $\Delta m_{\pi}^2 = 993(12) \binom{+\ 0}{-135} (149) \text{ MeV}^2$

Errors: (statistical)(chiral extrapolation)(large q²)

Exp: $\Delta m_{\pi}^2 = 1261.2 \text{ MeV}^2$

Summary

We used overlap fermion to calculate the S-parameter and pNG boson mass in 2-flavor QCD. Chiral symmetry on the lattice is essential in this calculation.

- Both the calculations reasonably reproduced the experimental values. Thus the feasibility of the LGT to calculate these quantities is demonstrated.
- The study of more realistic TC models is an interesting extension.
- LGT may be able to directly investigate physical quantities relevant for the LHC phenomenology.

Cancellation of the artifacts in VV-AA

20

 $\Pi_{\rm V-A}^{(0)}(q^2)$

In the spectral representation,

$$q^2 \Pi_{V-A}^{(0)}(q^2) = \frac{f_\pi^2 m_\pi^2}{q^2 + m_\pi^2} + (\text{excited states} \sim O(m_q^2))$$

- The obtained $\Pi_{V-A}^{(0)}(q^2)$ is compared to the spectral rep.
- For f_{π} and m_{π} , the measured values are used.

