S-parameter \& pseudo-NG boson mass from lattice QCD
 [arXiv:0806.4222]

Norikazu Yamada (KEK,GUAS)
for JLQCD \& TWQCD Collaboration

Lattice 2008@the College of William and Mary, Williamsburg, Virginia, USA, 2008 July 14-19.

Collaboration with

KEK: S. Hashimoto, T. Kaneko, H. Matsufuru, J. Noaki, E. Shintani
Tsukuba: S.Aoki
NBI: H. Fukaya (KEK)
YITP: T. Onogi
National Taiwan: T.W. Chiu
Academia Sinica: T.H. Hsieh

Lattice Gauge Theory in the LHC era

- Lattice Gauge Theory (LGT) has been successfully applied to a wide range of physics.
-What can we do using LGT in the LHC era?

Technicolor (TC) ${ }_{\text {[Weinberg(1979), susskind(1979)] }}$

- Strongly interacting gauge theory
- " χ-symmetry" of TC is dynamically broken at $\Lambda_{T C}$ (as in QCD).
\Rightarrow Triggers EW symmetry breaking
\Rightarrow Weak bosons acquire their masses.
- Typically, $m_{W^{ \pm}}=g_{2} F_{\mathrm{TC}} / 2 \Leftrightarrow F_{\mathrm{TC}} \sim 250 \mathrm{GeV}$ ($F_{\mathrm{TC}}:$ technipion decay constant)
$\Rightarrow \Lambda_{\mathrm{TC}} \sim\left(F_{\mathrm{TC}} / f_{\pi}\right) \times \Lambda_{\mathrm{QCD}} \sim 2600 \times \Lambda_{\mathrm{QCD}}$
- Elementary scalar is not necessary.
\Rightarrow No "hierarchy problem"
- Attractive candidate for the Higgs sector in the SM

Two key observables in TC

- S-parameter ${ }_{\text {Peskinin,Tkeuchi }}$ (I990,1992)]
- tends to be sizably affected in TC.
- Light pseudo-NG bosons
- often appear with a mass detectable in LHC (sometimes appear in the excluded region).

S-parameter [Peskin,Takeuchi (1990,1992)]

- Parameterizes "potential new physics contributions" to the EW gauge bosons' self-energy. "Oblique correction"
- Useful for New Physics search using the EW precision data

$$
S=16 \pi\left[\frac{\partial\left[q^{2}\left(\Pi_{V V}^{(1)}-\Pi_{A A}^{(1)}\right)\right]}{\partial q^{2}}\right]_{q^{2}=0}
$$

$$
i \int d^{4} x e^{i q \cdot x}\langle 0| T\left[J_{A, \mu}(x) J_{B, \nu}(0)\right]|0\rangle=\left(g_{\mu \nu} q^{2}-q_{\mu} q_{\nu}\right) \Pi_{A B}^{(1)}\left(q^{2}\right)-q_{\mu} q_{\nu} \Pi_{A B}^{(0)}\left(q^{2}\right)
$$

$<V V-A A>\Rightarrow$ S-parameter

S-parameter and L_{10}

Interesting scale $\sim \Lambda_{\mathrm{TC}} \Leftrightarrow$ Low energy TC \Rightarrow ChPT in TC

- In ordinary QCD ChPT [Gasser and Leutwyler (1984, 1985)]

$$
\begin{aligned}
& \begin{aligned}
\Pi_{V-A}^{(1)}\left(q^{2}\right) & =\Pi_{V V}^{(1)}\left(q^{2}\right)-\Pi_{A A}^{(1)}\left(q^{2}\right) \\
& =-\frac{f_{\pi}^{2}}{q^{2}}-8 L_{10}^{r}(\mu)-\frac{\ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+\frac{1}{3}-H\left(4 m_{\pi}^{2} / q^{2}\right)}{24 \pi^{2}}
\end{aligned} \\
& H(x)=(1+x)\left[\sqrt{1+x} \ln \left(\frac{\sqrt{1+x}-1}{\sqrt{1+x}+1}\right)+2\right]
\end{aligned}
$$

L_{10} : one of LEC's in ChPT

- Reinterpret QCD \rightarrow TC, and substitute the result

$$
S=-16 \pi\left[L_{10}^{r}(\mu)-\frac{1}{192 \pi^{2}}\left\{\ln \left(\frac{\mu^{2}}{m_{H}^{2}}\right)-\frac{1}{6}\right\}\right]
$$

Therefore determining L_{10} is equivalent to determining S-parameter.

- TC models \Rightarrow too many NG bosons.
- One standard wayout : introduce extra gauge symmetry which explicitly breaks χ-symmetry.
- Then NG bosons acquire the mass, and become pseudo-NG.

$$
m_{\mathrm{PNG}}^{2}=G \int_{0}^{\infty} d q^{2} q^{2}\left[\Pi_{T}^{(1)}\left(q^{2}\right)-\Pi_{X}^{(1)}\left(q^{2}\right)\right]
$$

G :model dependent coefficient
Π_{T} :VP of currents corresponding to unbroken generators
Π_{X} :VP of currents corresponding to broken generators
Once the underlying TC theory is specified, the NP part is independent of further details.

Pseudo NG Boson Mass practuon, Rexamen)

- A well known example is the charged pion in QED+QCD theory.
- QED interaction explicitly breaks chiral symmetry of QCD.

DGMLY sum rule in the chiral limit [Das,Guralnik,Mathur,Low,Young (1967)]

$$
m_{\pi^{ \pm}}^{2}=-\frac{3 \alpha}{4 \pi} \int_{0}^{\infty} d q^{2} \frac{\left.q^{2} \Pi_{V-A}^{(1)}\left(q^{2}\right)\right|_{m_{q}=0}}{f^{2}}
$$

$<V V-A A>$ comes in again.

With different method,
Duncan, Eichten ,Thacker(1998), Blum, Doi, Hayakawa, Izubuchi, Yamada(2007), Namekawa, Kikukawa(2006)

In this work

- Consider two-flavor QCD as TC, and calculate $\Pi_{\mathrm{V}-\mathrm{A}}\left(q^{2}\right)$ on the lattice.
- Evaluate
$\checkmark L_{10}$ (or S-parameter) through

$$
\Pi_{V-A}^{(1)}\left(q^{2}\right)=-\frac{f_{\pi}^{2}}{q^{2}}-8 L_{10}^{r}(\mu)-\frac{\ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+\frac{1}{3}-H\left(4 m_{\pi}^{2} / q^{2}\right)}{24 \pi^{2}}
$$

$\checkmark m_{\pi r^{2}}$ (or pseudo-NG boson mass) from

$$
m_{\pi^{ \pm}}^{2}=-\frac{3 \alpha}{4 \pi} \int_{0}^{\infty} d q^{2} \frac{\left.q^{2} \Pi_{V-A}^{(1)}\left(q^{2}\right)\right|_{m_{q}=0}}{f^{2}}
$$

- Compare with their experimental values.

Demonstrate the feasibility of the lattice technique for these quantities.

$\langle V V-A A\rangle$ on the lattice

- In continuum, WT Identity guarantees that $\langle V V-A A\rangle$ vanishes if there is no spontaneous nor explicit χ-sym breaking.
- If the lattice formulation explicitly breaks χ-sym, it is difficult to disentangle the effect of the $\mathrm{S} \chi \mathrm{SB}$ from the explicit breaking due to the lattice artifact.
Dxact χ-sym is required in this calculation to extract the physic from $\langle V V-A A\rangle$.[Sharpe(2007)]

Overlap fermion formalism

Simulation Parameters

β	2.30		
$\#$ of site	$16^{3} \times 32$		

$\mathrm{r}_{0}=0.49 \mathrm{fm} \Rightarrow \mathrm{a}=0.1 \mathrm{I} 84(\mathrm{I} 2)(\mathrm{I} \mid) \mathrm{fm} \quad(1 / \mathrm{a}=1.67(2)(2) \mathrm{GeV})$

$$
(L / a)^{3} \times(T / a)=16^{3} \times 32 \Rightarrow V \approx(1.9 \mathrm{fm})^{3}
$$

- lightest pion $\Rightarrow m_{\pi} \approx 290 \mathrm{MeV}, m_{\pi} L \approx 2.8$.
- Calculation is done in a fixed topological sector $Q_{\text {top }}=0$.

Current correlator in continuum

$$
\begin{aligned}
& i \int d^{4} x e^{i q \cdot x}\langle 0| T\left[J_{\mu}(x) J_{\nu}^{\dagger}(0)\right]|0\rangle=\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi_{J}^{(1)}\left(q^{2}\right)-q_{\mu} q_{\nu} \Pi_{J}^{(0)}\left(q^{2}\right), \\
& J_{\mu}(x)=\left\{\begin{array}{l}
V_{\mu}(x)=\bar{q}_{1}(x) \gamma_{\mu} q_{2}(x), \\
A_{\mu}(x)=\bar{q}_{1}(x) \gamma_{\mu} \gamma_{5} q_{2}(x),
\end{array}\right.
\end{aligned}
$$

Current correlator on the lattice

$$
\begin{aligned}
\Pi_{J \mu \nu}(\hat{q}) & =\sum_{x} e^{i \hat{q} \cdot x}\langle 0| T\left[J_{\mu}^{(21)}(x) J_{\nu}^{(12)}(0)\right]|0\rangle \\
& =\sum_{n=0}^{\infty} B_{J}^{(n)}\left(\hat{q}_{\mu}\right)^{2 n} \delta_{\mu \nu}+\sum_{n, m=1}^{\infty} C_{J}^{(n, m)}\left(\hat{q}_{\mu}\right)^{2 n-1}\left(\hat{q}_{\nu}\right)^{2 m-1}
\end{aligned}
$$

$V_{\mu}^{(12)}=Z \bar{q}_{1} \gamma_{\mu}\left(1-a D / 2 m_{0}\right) q_{2}$ and similarly defined $A_{\mu}{ }^{(12)}$ $\mathrm{Z}=1.3842(3)$ is common, and determined nonperturbatively.

- The currents are not conserved ones. c.f. [Kikukawa, A. Yamada (1999)]
- Many terms representing lattice artifacts show up.
(only $B_{J}{ }^{(0)} \& C_{J}{ }^{(l, l)}$ are physically relevant.)
- But the exact symmetry between V_{μ} and A_{μ} simplifies the analysis!

Cancellation of the artifacts in Π_{V-A}

With our V_{μ} and $A_{\mu},\langle V V-A A\rangle$ exactly vanishes in the absence of both explicit and spontaneous breakings as in continuum.

The artifacts arising in short distance vanishes in $\langle V V-A A\rangle$.
The artifacts coupling to long distance physics are numerically investigated, and found to be negligibly small in $\langle V V-A A\rangle$.

Therefore, we write $\langle V V-A A\rangle$ as

$$
\Pi_{V \mu \nu}-\Pi_{A \mu \nu}=\left(\hat{q}^{2} \delta_{\mu \nu}-\hat{q}_{\mu} \hat{q}_{\nu}\right) \Pi_{V-A}^{(1)}-\hat{q}_{\mu} \hat{q}_{\nu} \Pi_{V-A}^{(0)}
$$

By considering $\mu=\nu$ and $\mu \neq \nu$, we extract $\Pi_{V-A}^{(0)}\left(q^{2}\right), \underline{\Pi_{V-A}^{(1)}\left(q^{2}\right)}$

L_{10} from $\Pi_{V-A}{ }^{(1)}\left(q^{2}\right)$

- ChPT predicts [Gasser \& Leutwyler (1984)]

$$
\Pi_{V-A}^{(1)}\left(q^{2}\right)=-\frac{f_{\pi}^{2}}{q^{2}}-8 L_{10}^{r}\left(\mu_{\chi}\right)-\frac{\ln \left(\frac{m_{\pi}^{2}}{\mu_{\chi}^{2}}\right)+\frac{1}{3}-H(x)}{24 \pi^{2}}
$$

($x=4 m_{\pi^{2}}^{2} / q^{2}, H(x)$ is known function.)

Fit the data to the ChPT prediction using the measured f_{π} and m_{π}.

$$
\begin{gathered}
\begin{array}{c}
\begin{array}{c}
L_{10}\left(m_{\rho}\right)=-5.2(2)\left({ }_{-0}^{+0}\right)\left({ }_{-0}^{+5}\right) \times 10^{-3} \\
\left(\chi^{2} / d o f=0.5,2.3\right)
\end{array} \\
L_{10}(E x p)=-5.09(47) \times 10^{-3}
\end{array}, ~
\end{gathered}
$$

Pseudo-NG boson mass

$$
m_{\pi^{ \pm}}^{2}=-\frac{3 \alpha}{4 \pi} \int_{0}^{\infty} d q^{2} \frac{\left.q^{2} \Pi_{V-A}^{(1)}\left(q^{2}\right)\right|_{m_{q}=0}}{f^{2}}
$$

Integral region is separated at $q^{2}=2$ to avoid discretization effects.

- Small q^{2} region: Integrate fit func.

Functional forms adopted :

$$
\hat{q}^{2} \Pi_{V-A}^{(1), \text { fit }}\left(\hat{q}^{2}\right)=-\hat{f}_{\pi}^{2}+\frac{\hat{q}^{2} \hat{f}_{V}^{2}}{\hat{q}^{2}+\hat{m}_{V}^{2}}-\frac{\hat{q}^{2} \hat{f}_{A}^{2}}{\hat{q}^{2}+\hat{m}_{A}^{2}}-\frac{\hat{q}^{2}}{24 \pi^{2}} \frac{X\left(\hat{q}^{2}\right)}{1+x_{5}\left(Q_{\rho}^{2}\right)^{4}},
$$

where $Q_{\rho}^{2}=\hat{q}^{2} /\left(a^{2} m_{\rho}^{2}\right)$

- Ist and 2 nd Weinberg sum rules are imposed.
$\hat{f}_{\pi}^{2}=\hat{f}_{V}^{2}-\hat{f}_{A}^{2}, \quad \hat{f}_{A} \hat{m}_{A}=\hat{f}_{V} \hat{m}_{V}$,
$\hat{f}_{V}=x_{1}+x_{3} \hat{m}_{\pi}^{2}, \quad \hat{m}_{V}=x_{2}+x_{4} \hat{m}_{\pi}^{2}$
- $X\left(q^{2}\right)$ are chosen to be consistent with the ChPT (OPE) prediction in small (large) q^{2}.

$$
X\left(q^{2}\right)=\left\{\begin{array}{l}
\ln \left(\frac{\hat{m}_{\pi}^{2}}{\hat{m}_{\rho}^{2}}\right)+\frac{1}{3}-H\left(4 \hat{m}_{\pi}^{2} / \hat{q}^{2}\right)+x_{6} Q_{\rho}^{2} \\
x_{6} Q_{\rho}^{2} \ln \left(Q_{\rho}^{2}\right) .
\end{array}\right.
$$

Pseudo-NG boson mass

-Small q^{2} region: Integrate fit func.
$\left.\Delta m_{\pi}^{2}\right|_{\tilde{q}^{2} \leq 2.0}=676(50)$ and $811(12) \mathrm{MeV}^{2}$

- Large q^{2} region: OPE predicts

$$
\begin{aligned}
& \Pi_{V-A}^{(1)}\left(q^{2}\right) \sim a_{6} /\left(q^{2}\right)^{3} \\
& a_{6}=[-0.001,-0.01] \mathrm{GeV}^{6} \\
& \left.\Delta m_{\pi}^{2}\right|_{q^{2} \geq 2.0}=182(149) \mathrm{MeV}^{2}
\end{aligned}
$$

$$
\Delta m_{\pi}^{2}=993(12)\left({ }_{-135}^{+}\right)(149) \mathrm{MeV}^{2}
$$

Errors: (statistical)(chiral extrapolation)(large q^{2})
Exp: $\Delta \mathrm{m}_{\pi}{ }^{2}=1261.2 \mathrm{MeV}^{2}$

Summary

- We used overlap fermion to calculate the S-parameter and pNG boson mass in 2-flavor QCD. Chiral symmetry on the lattice is essential in this calculation.
- Both the calculations reasonably reproduced the experimental values. Thus the feasibility of the LGT to calculate these quantities is demonstrated.
- The study of more realistic TC models is an interesting extension.
- LGT may be able to directly investigate physical quantities relevant for the LHC phenomenology.

Cancellation of the artifacts in $V V-A A$

- Define a measure of artifacts

$$
\Delta_{J}=\sum_{\mu, \nu} \hat{q}_{\mu} \hat{q}_{\nu}\left(\frac{1}{\hat{q}^{2}}-\frac{\hat{q}_{\nu}}{\sum_{\lambda}\left(\hat{q}_{\lambda}\right)^{3}}\right) \Pi_{J \mu \nu}
$$

$$
\begin{aligned}
\Delta_{J}= & \sum_{n=1}^{\infty} B_{J}^{(n)}\left(\frac{Q^{(2 n+2)}}{q^{2}}-\frac{Q^{(2 n+3)}}{Q^{(3)}}\right) \\
& +\sum_{n, m=1}^{\infty} C_{J}^{(n, m)} Q^{(2 n)}\left(\frac{Q^{(2 m)}}{q^{2}}-\frac{Q^{(2 m+1)}}{Q^{(3)}}\right) \\
& (n=m=1 \text { is not included })
\end{aligned}
$$

Δ_{J} entirely consists of lattice artifacts!

Results at $\mathrm{m}_{\mathrm{q}}=0.015$ is shown.

In the difference $\langle\mathrm{VV}-\mathrm{AA}\rangle$, irrelevant terms cancel!

$\Pi_{\mathrm{V}-\mathrm{A}}{ }^{(0)}\left(q^{2}\right)$

In the spectral representation,

$$
q^{2} \Pi_{V-A}^{(0)}\left(q^{2}\right)=\frac{f_{\pi}^{2} m_{\pi}^{2}}{q^{2}+m_{\pi}^{2}}+\left(\text { excited states } \sim O\left(m_{q}^{2}\right)\right)
$$

- The obtained $\Pi_{V-A}{ }^{(0)}\left(q^{2}\right)$ is compared to the spectral rep.
- For f_{π} and m_{π}, the measured values are used.

