## Chiral perturbation theory, $K \rightarrow \pi \pi$ decays and 2+1 flavor, domain wall QCD.

#### Lattice 2008

# *Shu Li and Norman H. Christ* for the RBC and UKQCD Collaborations

# Outline

- $K \rightarrow \pi \pi$  from  $K \rightarrow \pi$  and  $K \rightarrow |0>$
- Ensembles: 2+1 DWF
- Lattice matrix elements
- The chiral limit: *LEC's*
- Extrapolating to  $m_K = 495 \text{ MeV}$

#### **RBC and UKQCD Collaboration**

Tom Blum (Connecticut) Norman Christ (Columbia) Chris Dawson (Virginia) <u>Shu Li</u> (Columbia) Robert Mawhinney (Columbia) Enno Scholz (BNL) Amarjit Soni (BNL)

2+1 Flavor partially quenched chiral perturbation theory

Christopher Aubin (W&M) Jack Laiho (St Louis) Shu Li (Columbia)

Lattice 2008, July 14, 2008 (3)

# Physics Background

Lattice 2008, July 14, 2008 (4)

### **Low Energy Effective Theory**



Lattice 2008, July 14, 2008 (5)

#### **Four quark operators**

Current-current operators

 $Q_1 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{u}_{\beta} u_{\beta})_{V-A}$  $Q_2 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} (\bar{u}_{\beta} u_{\alpha})_{V-A}$ 

• QCD Penguins

$$Q_{3} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V-A}$$
$$Q_{4} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$
$$Q_{5} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V+A}$$
$$Q_{6} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

• Electro-Weak Penguins  $Q_{7} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\beta})_{V+A}$   $Q_{8} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\alpha})_{V+A}$   $Q_{9} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\beta})_{V-A}$   $Q_{10} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\alpha})_{V-A}$ 

Lattice 2008, July 14, 2008 (6)

### **Chiral Perturbation Theory**

- Describe low energy QCD as an SU(3)<sub>L</sub> × SU(3)<sub>R</sub> covariant theory of  $\pi$ 's and *K*'s.
- In LO PQChPT the operators  $Q_1 Q_{10}$  can be expressed in terms of the four operators:
- In LO, all matrix elements of  $Q_1 - Q_{10}$  are described by 8 LEC's:  $\Delta I = 3/2$ :  $\alpha_{27}, \alpha_{88} \alpha_{88m}$  $\Delta I = \frac{1}{2}$ :  $\alpha_{33}, \alpha_{81A}, \alpha_{81S}, \alpha_{81-5}, \alpha_{81-6}$  $\mathcal{O}_{LO}^{(8,8)} = \operatorname{str} \left[\lambda_6 \Sigma Q \Sigma^{\dagger}\right]$  $\mathcal{O}_{LO,1}^{(8,1)} = \operatorname{str} \left[\lambda_6 \partial_\mu \Sigma \partial^\mu \Sigma^{\dagger}\right]$  $\mathcal{O}_{LO,2}^{(8,1)} = 2B_0 \operatorname{str} \left[\lambda_6 \left(\Sigma \mathcal{M} + \mathcal{M}^{\dagger} \Sigma^{\dagger}\right)\right]$  $\mathcal{O}_{LO}^{(27,1)} = t_{kl}^{ij} \left(\Sigma \partial_\mu \Sigma^{\dagger}\right)_i^k \left(\Sigma \partial^\mu \Sigma^{\dagger}\right)_j^l$

#### **Chiral Perturbation Theory (con't)**

- At LO the needed LEC's can be determined from  $< K / Q_i / 0 > \text{and} < K / Q_i / \pi >$
- Avoids dealing with /  $\pi \pi$  > final states
- Method of Bernard, et al., Phys. Rev. D32, 2343 (1985).
- Present work is an extension of the RBC quenched calculation: Blum, *et al.*, Phys.Rev.D68:114506 (2003).
- Exploit both  $m_{val} = m_{sea}$  and  $m_{val} \neq m_{sea}$ :
  - Partially quenched ChPT
  - Simplify penguin operators using only partially quenched singlets.

# **Matrix elements**

Lattice 2008, July 14, 2008 (9)

#### **Matrix Elements**

- Use 24<sup>3</sup> x 64, RBC/UKQCD 2+1 flavor configurations:
  - ml = 0.005 ( $m_{\pi}$  = 331 MeV) 76 configs, 80 mdt separation
  - ml = 0.01 ( $m_{\pi}$  = 419 MeV) 74 configs, 80 mdt separation
- Use 0.001, 0.005, 0.01, 0.02, 0.03 and 0.04 valence quark masses giving pion masses (MeV):

|       | 0.001 | 0.005 | 0.01 | 0.02 | 0.03 | 0.04 |
|-------|-------|-------|------|------|------|------|
| 0.001 | 241   | 294   | 349  | 438  | 512  | 576  |
| 0.005 | 294   | 338   | 387  | 469  | 539  | 600  |
| 0.01  | 349   | 387   | 430  | 505  | 570  | 629  |
| 0.02  | 438   | 469   | 505  | 570  | 629  | 682  |
| 0.03  | 512   | 539   | 570  | 629  | 682  | 732  |
| 0.04  | 576   | 600   | 629  | 682  | 732  | 779  |

• Use strange quark mass  $m_s = 0.04$  (15% too large)

• Residual mass  $m_{\rm res} = 0.00315$ .

#### **Example** $Q_2$ matrix element

 $m_{sea} = 0.005$   $m_x = m_z$ 



Lattice 2008, July 14, 2008 (11)

#### Subtraction for $Q_6$ Matrix Element



# Chiral **Extrapolation**

Lattice 2008, July 14, 2008 (13)

## **Determination of** $\alpha_{27}$

- Fit to points with  $(m_{val} + m_{res})_{avg} \le 0.013$
- PQChPT describes this data
- Large, ~50% correction!?
- Same large ChPT corrections as RBC/UQKCD, arXiv:0804.0473 (see talks of Enno Scholz and Chris Kelly)
- Fit does not work without  $m_K m_\pi f_K f_\pi$  division.



## **Relative size of LO and NLO terms**

- LO and NLO log terms are the same size.
- Consistent results if we divide by  $m_K m_{\pi} (f_K f_{\pi})^2$
- Double the difference between two fits to estimate systematic error.



# **Determination of** $\alpha_6$

- NLO fit not possible, insufficient data to determine 8 LEC's.
- LO fit works well for large mass range.
- Omitted NLO logs are important!



## Effect of NLO logs on $\alpha_6$

- Chose  $m_{max} = 0.005$ .
- Use linear fit for  $m_{max} \leq m$
- Use chiral log for  $m \le m_{max}$
- Match value, slope and curvature at  $m = m_{max}$



### **Results for LEC's**

| $Q_i$    | $lpha_{i,\mathrm{ren}}^{(1/2)}$ | $lpha_{i,\mathrm{ren}}^{(3/2)}$ |
|----------|---------------------------------|---------------------------------|
| 1        | $-6.6(15)(66) \times 10^{-5}$   | $-2.48(24)(39) \times 10^{-6}$  |
| <b>2</b> | $9.9(21)(99) \times 10^{-5}$    | $-2.47(24)(39) \times 10^{-6}$  |
| 3        | $-0.8(31)(21) \times 10^{-5}$   | 0.0                             |
| 4        | $1.62(44)(162) \times 10^{-4}$  | 0.0                             |
| 5        | $-1.52(29)(152) \times 10^{-4}$ | 0.0                             |
| 6        | $-4.1(7)(41) \times 10^{-4}$    | 0.0                             |
| 7        | $-1.11(17)(18) \times 10^{-5}$  | $-5.53(85)(91) \times 10^{-6}$  |
| 8        | $-4.92(72)(75) \times 10^{-5}$  | $-2.46(37)(37) \times 10^{-5}$  |
| 9        | $-9.8(20)(98) \times 10^{-5}$   | $-3.72(37)(59) \times 10^{-6}$  |
| 10       | $6.8(15)(68) \times 10^{-5}$    | $-3.69(37)(59) \times 10^{-6}$  |

- $Q_1 Q_6, Q_9, Q_{10}$  in (GeV)<sup>4</sup>  $Q_7, Q_8$  in (GeV)<sup>6</sup>
- Heroic 7-operator NPR performed!

# $K \rightarrow \pi \pi$ decay

Lattice 2008, July 14, 2008 (19)

# Estimate $K \rightarrow \pi \pi$ decay amplitudes

- Made difficult by 100% errors on important LEC's.
- Conventional NLO extrapolation impeded by:
  - 2+1 flavor ChPT formula not available
  - Not all LEC's have been determined
- ChPT likely does not apply to the physical kaon:
  - Find 100% NLO corrections at  $m_{PS} = 430 \text{ MeV}$
  - $(m_{K}/m_{PS})^{2} = (495/430)^{2} = 1.3$
  - Corroboration of RBC/UKQC arXiv:0804.0473 (see talks of Chris Kelly, Bob Mawhinney and Enno Scholz)
- Attempt rough estimates using two extrapolations:
  - LO ChPT
  - LO+ only NLO logs with  $\Lambda_{chiral} = 1 \text{ GeV}$ (no analytic terms)

#### Estimate $K \rightarrow \pi \pi$ amplitudes (con't)



#### $\operatorname{Re} A_2$



Lattice 2008, July 14, 2008 (21)

#### Estimate $K \rightarrow \pi \pi$ amplitudes (con't)

#### **Re** $\varepsilon'/\varepsilon$

#### Re $\varepsilon'/\epsilon$



 $m = \xi m_{phys}$ 

Lattice 2008, July 14, 2008 (22)

# Conclusion

| Quantity                                | This analysis                  | Quenched                     | Experiment            |
|-----------------------------------------|--------------------------------|------------------------------|-----------------------|
| $\operatorname{Re}A_0$ (GeV)            | $4.5(11)(53) \times 10^{-7}$   | $2.96(17) \times 10^{-7}$    | $3.33 \times 10^{-7}$ |
| $\operatorname{Re}A_2$ (GeV)            | $8.57(99)(300) \times 10^{-9}$ | $1.172(53) \times 10^{-8}$   | $1.50 \times 10^{-8}$ |
| $Im A_0$ (GeV)                          | $-6.5(18)(77) \times 10^{-11}$ | $-2.35(40) \times 10^{-11}$  |                       |
| $Im A_2$ (GeV)                          | $-7.9(16)(39) \times 10^{-13}$ | $-1.264(72) \times 10^{-12}$ |                       |
| $1/\omega$                              | 50(13)(62)                     | 25.3(1.8)                    | 22.2                  |
| $\operatorname{Re}(\epsilon'/\epsilon)$ | $7.6(68)(256) \times 10^{-4}$  | $-4.0(2.3) \times 10^{-4}$   | $1.65 \times 10^{-3}$ |

- ChPT approach to  $K \rightarrow \pi \pi$  faces severe difficulties.
- RBC/UKQCD studying physical  $\pi \pi$  final states.
- DWF on coarse lattices and large volumes:  $4 \rightarrow 5$  fm?
- Vranas auxiliary determinant (talk of Dwight Renfrew)