# Chiral perturbation theory, $K \rightarrow \pi \pi$ decays and 2+1 flavor, domain wall QCD. 

Lattice 2008

Shu Li and Norman H. Christ for the RBC and UKQCD Collaborations

## Outline

- $K \rightarrow \pi \pi$ from $K \rightarrow \pi$ and $K \rightarrow \mid 0>$
- Ensembles: 2+1 DWF
- Lattice matrix elements
- The chiral limit: LEC's
- Extrapolating to $m_{K}=495 \mathrm{MeV}$


## RBC and UKQCD Collaboration

Tom Blum (Connecticut)
Norman Christ (Columbia)
Chris Dawson (Virginia)

Shu Li (Columbia)
Robert Mawhinney (Columbia)
Enno Scholz (BNL)
Amarjit Soni (BNL)

2+1 Flavor partially quenched chiral perturbation theory

Christopher Aubin (W\&M)
Jack Laiho (St Louis)
Shu Li (Columbia)

## Physics

## Background

## Low Energy Effective Theory

- Represent weak interactions by local four-quark Lagrangian
$\mathcal{H}^{(\Delta S=1)}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)-\frac{V_{t d}}{V_{t s}^{*}} \frac{V_{u s}^{*}}{V_{u d}} y_{i}(\mu)\right] Q_{i}\right\}$
- $V_{q q^{\prime}}$ CKM matrix elements
- $z_{i}$ and $\mathrm{y}_{\mathrm{i}}$ - Wilson Coefficients
- $Q_{i}$ - four-quark operators



## Four quark operators

- Current-current operators

$$
\begin{aligned}
& Q_{1} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} u_{\beta}\right)_{V-A} \\
& Q_{2} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} u_{\alpha}\right)_{V-A}
\end{aligned}
$$

- QCD Penguins

$$
\begin{aligned}
& Q_{3} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A} \\
& Q_{4} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A} \\
& Q_{5} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A} \\
& Q_{6} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}
\end{aligned}
$$

- Electro-Weak Penguins

$$
Q_{7} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A}
$$

$$
Q_{8} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}
$$

$$
Q_{9} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A}
$$

$$
Q_{10} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A}
$$

## Chiral Perturbation Theory

- Describe low energy QCD as an $\operatorname{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ covariant theory of $\pi$ 's and $K$ 's.
- In LO PQChPT the operators $Q_{1}-Q_{10}$ can be expressed in terms of the four operators:
- In LO, all matrix elements of $Q_{1}-Q_{10}$ are

$$
\mathcal{O}_{L O}^{(8,8)}=\operatorname{str}\left[\lambda_{6} \Sigma Q \Sigma^{\dagger}\right]
$$ described by 8 LEC's:

$$
\mathcal{O}_{L O, 1}^{(8,1)}=\operatorname{str}\left[\lambda_{6} \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right]
$$

$\Delta I=3 / 2:$
$\alpha_{27}, \alpha_{88} \alpha_{88 \mathrm{~m}}$
$\Delta I=1 / 2:$
$\mathcal{O}_{L O, 2}^{(8,1)}=2 B_{0} \operatorname{str}\left[\lambda_{6}\left(\Sigma \mathcal{M}+\mathcal{M}^{\dagger} \Sigma^{\dagger}\right)\right]$
$\alpha_{3 \overline{3}}, \alpha_{81 A}, \alpha_{81 S}, \alpha_{81-5}, \alpha_{81-6}$

$$
\mathcal{O}_{L O}^{(27,1)}=t_{k l}^{i j}\left(\Sigma \partial_{\mu} \Sigma^{\dagger}\right)_{i}^{k}\left(\Sigma \partial^{\mu} \Sigma^{\dagger}\right)_{j}^{l}
$$

## Chiral Perturbation Theory (con't)

- At LO the needed LEC's can be determined from
$<K\left|Q_{i}\right| 0>$ and $<K\left|Q_{i}\right| \pi>$
- Avoids dealing with $\mid \pi \pi>$ final states
- Method of Bernard, et al., Phys. Rev. D32, 2343 (1985).
- Present work is an extension of the RBC quenched calculation: Blum, et al., Phys.Rev.D68:114506 (2003).
- Exploit both $\boldsymbol{m}_{\text {val }}=\boldsymbol{m}_{\text {sea }}$ and $\boldsymbol{m}_{\text {val }} \neq \boldsymbol{m}_{\text {sea }}$ :
- Partially quenched ChPT
- Simplify penguin operators using only partially quenched singlets.


## Matrix elements

## Matrix Elements

- Use $24^{3} \times 64$, RBC/UKQCD $2+1$ flavor configurations:
$-\mathrm{ml}=0.005\left(m_{\pi}=331 \mathrm{MeV}\right) 76$ configs, 80 mdt separation
$-\mathrm{ml}=0.01 \quad\left(m_{\pi}=419 \mathrm{MeV}\right) 74$ configs, 80 mdt separation
- Use $0.001,0.005,0.01,0.02,0.03$ and 0.04 valence quark masses giving pion masses (MeV):

|  | 0.001 | 0.005 | 0.01 | 0.02 | 0.03 | 0.04 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.001 | 241 | 294 | 349 | 438 | 512 | 576 |
| 0.005 | 294 | 338 | 387 | 469 | 539 | 600 |
| 0.01 | 349 | 387 | 430 | 505 | 570 | 629 |
| 0.02 | 438 | 469 | 505 | 570 | 629 | 682 |
| 0.03 | 512 | 539 | 570 | 629 | 682 | 732 |
| 0.04 | 576 | 600 | 629 | 682 | 732 | 779 |

- Use strange quark mass $m_{s}=0.04$ (15\% too large)
- Residual mass $m_{\text {res }}=0.00315$.


## Example $\boldsymbol{Q}_{2}$ matrix element

$$
m_{\text {sea }}=0.005 \quad m_{x}=m_{z}
$$



## Subtraction for $\mathbf{Q}_{6}$ Matrix Element



08, July 14, 2008

## Chiral

## Extrapolation

## Determination of $\alpha_{27}$

- Fit to points with $\left(m_{\text {val }+} m_{\text {res }}\right)_{\text {avg }} \leq 0.013$
- PQChPT describes this data
- Large, ~50\% correction!?
- Same large ChPT corrections as RBC/UQKCD, arXiv:0804.0473 (see talks of Enno Scholz and Chris Kelly)
- Fit does not work without $m_{K} m_{\pi} f_{K} f_{\pi}$ division.



## Relative size of LO and NLO terms

- LO and NLO log terms are the same size.
- Consistent results if we divide by $m_{K} m_{\pi}\left(f_{K} f_{\pi}\right)^{2}$
- Double the difference between two fits to estimate systematic error.



## Determination of $\alpha_{6}$

- NLO fit not possible, insufficient data to determine 8 LEC's.
- LO fit works well for large mass range.
- Omitted NLO logs are important!



## Effect of NLO logs on $\alpha_{6}$

- Chose $m_{\text {max }}=0.005$.
- Use linear fit for $m_{\max } \leq m$
- Use chiral log for $m \leq m_{\max }$
- Match value, slope and curvature at $m=m_{\max }$



## Results for LEC's

| $Q_{i}$ | $\alpha_{i, \text { ren }}^{(1 / 2)}$ | $\alpha_{i, \text { ren }}^{(3 / 2)}$ |
| :---: | :---: | :---: |
| 1 | $-6.6(15)(66) \times 10^{-5}$ | $-2.48(24)(39) \times 10^{-6}$ |
| 2 | $9.9(21)(99) \times 10^{-5}$ | $-2.47(24)(39) \times 10^{-6}$ |
| 3 | $-0.8(31)(21) \times 10^{-5}$ | 0.0 |
| 4 | $1.62(44)(162) \times 10^{-4}$ | 0.0 |
| 5 | $-1.52(29)(152) \times 10^{-4}$ | 0.0 |
| 6 | $-4.1(7)(41) \times 10^{-4}$ | 0.0 |
| 7 | $-1.11(17)(18) \times 10^{-5}$ | $-5.53(85)(91) \times 10^{-6}$ |
| 8 | $-4.92(72)(75) \times 10^{-5}$ | $-2.46(37)(37) \times 10^{-5}$ |
| 9 | $-9.8(20)(98) \times 10^{-5}$ | $-3.72(37)(59) \times 10^{-6}$ |
| 10 | $6.8(15)(68) \times 10^{-5}$ | $-3.69(37)(59) \times 10^{-6}$ |

- $Q_{1}-Q_{6}, Q_{9}, Q_{10}$ in $(\mathrm{GeV})^{4} Q_{7}, Q_{8}$ in $(\mathrm{GeV})^{6}$
- Heroic 7-operator NPR performed!


# $K \rightarrow \pi \pi$ decay 

## Estimate $K \rightarrow \pi \pi$ decay amplitudes

- Made difficult by $100 \%$ errors on important LEC’s.
- Conventional NLO extrapolation impeded by:
- 2+1 flavor ChPT formula not available
- Not all LEC’s have been determined
- ChPT likely does not apply to the physical kaon:
- Find $100 \%$ NLO corrections at $m_{P S}=430 \mathrm{MeV}$
- $\left(m_{K} / m_{P S}\right)^{2}=(495 / 430)^{2}=1.3$
- Corroboration of RBC/UKQC arXiv:0804.0473 (see talks of Chris Kelly, Bob Mawhinney and Enno Scholz)
- Attempt rough estimates using two extrapolations:
- LO ChPT
- LO+ only NLO logs with $\Lambda_{\text {chiral }}=1 \mathrm{GeV}$ (no analytic terms)


## Estimate $K \rightarrow \pi \pi$ amplitudes (con't)



Lattice 2008, July 14, 2008

## Estimate $K \rightarrow \pi \pi$ amplitudes (con't)

$\operatorname{Re} \varepsilon^{\prime} / \varepsilon$

$m=\xi m_{\text {phys }}$
$\operatorname{Re} \varepsilon^{\prime} / \varepsilon$


Lattice 2008, July 14, 2008

## Conclusion

| Quantity | This analysis | Quenched | Experiment |
| :---: | :---: | :---: | :---: |
| $\operatorname{Re} A_{0}(\mathrm{GeV})$ | $4.5(11)(53) \times 10^{-7}$ | $2.96(17) \times 10^{-7}$ | $3.33 \times 10^{-7}$ |
| $\operatorname{Re} A_{2}(\mathrm{GeV})$ | $8.57(99)(300) \times 10^{-9}$ | $1.172(53) \times 10^{-8}$ | $1.50 \times 10^{-8}$ |
| $\operatorname{Im} A_{0}(\mathrm{GeV})$ | $-6.5(18)(77) \times 10^{-11}$ | $-2.35(40) \times 10^{-11}$ |  |
| $\operatorname{Im} A_{2}(\mathrm{GeV})$ | $-7.9(16)(39) \times 10^{-13}$ | $-1.264(72) \times 10^{-12}$ |  |
| $1 / \omega$ | $50(13)(62)$ | $25.3(1.8)$ | 22.2 |
| $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)$ | $7.6(68)(256) \times 10^{-4}$ | $-4.0(2.3) \times 10^{-4}$ | $1.65 \times 10^{-3}$ |

- ChPT approach to $K \rightarrow \pi \pi$ faces severe difficulties.
- RBC/UKQCD studying physical $\pi \pi$ final states.
- DWF on coarse lattices and large volumes: $4 \rightarrow 5 \mathrm{fm}$ ?
- Vranas auxiliary determinant (talk of Dwight Renfrew)

