Non-perturbative quark mass dependence in the heavy-light sector of two-flavour QCD

Patrick Fritzsch*

in collaboration with J. Heitger & R. Sommer

*Westfälische Wilhelms-Universität Münster, Institut für Theoretische Physik 🍄

Lattice 2008, College of William & Mary Williamsburg, Virginia, USA, 2008 July 14 - 19

Motivation

$$\mathcal{L}_{\mathrm{HQET}}(x) = \overline{\psi}_{\mathrm{h}}(x) \bigg[\underbrace{D_{0} + m}_{\text{static limit}} - \frac{\omega_{\mathrm{kin}}}{2m} \mathbf{D}^{2} - \frac{\omega_{\mathrm{spin}}}{2m} \sigma \mathbf{B} \bigg] \psi_{\mathrm{h}}(x) + \dots,$$

m : heavy quark mass

- ► systematic expansion in 1/m, accurate for m ≫ Λ_{QCD}, renormalizable & has a continuum limit
- ▶ matching $\{m, \omega_{spin}, \cdots\} \Leftrightarrow \{QCD \text{ parameters}\}$ required to make HQET an effective theory of QCD
- ▶ consider HQET as expansion of QCD in $1/z \equiv 1/(LM)$ and verify that its large-z behaviour complies with HQET
- tests may justify interpolations between the charm region (slightly above of it) and the static limit to the b-scale also in large-volume physics applications, e.g. to determine F_B [Alpha:JHEP02(2008)078]
- comparison to tests of quenched QCD [Heitger etal:JHEP11(2004)048]

Requirements

Finetuning

line of constant physics; within our strategy to do a NP matching between QCD and HQET, we are working at

 $\bar{g}^2(L_1) \approx 4.484$ $L_1 m_l \approx 0$ $z \equiv L_1 M \approx \text{const}$

M : renormalization group invariant heavy quark mass

connection between bare & renormalized parameters of the theory
 knowledge of improvement coeff. and renormalization constants
 crucial to invert

$$z(\kappa_{\rm h}) \equiv L_1 M = L_1 Z_{\rm M} \widetilde{m}_{
m q,h} = L_1 Z_{\rm M} m_{
m q,h} (1 + b_{
m m} a m_{
m q,h})$$

with $\textit{am}_{q,h}=(\kappa_h^{-1}-\kappa_c^{-1})/2$, $\textit{L}_1\textit{/a}\in\{20,24,32,40\}.$ Quadratic equation with solutions

$$\kappa_{\mathrm{h}}(z) = igg[rac{1}{\kappa_{\mathrm{c}}} - rac{1}{b_{\mathrm{m}}}igg(1 - \sqrt{1 + z \cdot rac{4b_{\mathrm{m}}}{(L_{1}/a)Z_{\mathrm{M}}}}igg)igg]^{-1}$$

restricts $z(L_1) < -(L_1/a)Z_M/(4b_m)$.

Simulation parameters

▶ $b_{\rm m}$ and $Z_{\rm M}$ non-perturbatively computed by the Alpha-collaboration [Della Morte etal:PoS(LATTICE 2007)246] ⇒ z < 22 possible for $L_1 = 24, 32, 40$ and z < 17 for $L_1 = 20$

we choose z ∈ {4,6,7,9,11,13,15,18,21} to cover a wide range of masses ↔ M ~ (1.5,...,8.3)GeV (reference scale L* ≈ 0.6fm from [Alpha:JHEP07(2008)037])

L_1/a	β	$\kappa_{\rm c}$	$L_1 m_l$
20	6.1906	0.135997290	+0.00055(13)
24	6.3158	0.135772110	-0.000145(66)
32	6.5113	0.135421494	+0.000143(36)
40	6.6380	0.135192285	+0.000024(24)

Framework

The Schrödinger functional as finite renorm. scheme

- periodic b.c. in space and Dirichlet in time
- fermion fields periodic in space up to a phase

$$\begin{split} \psi(x+\hat{k}L) &= \mathrm{e}^{i\theta}\psi(x)\\ \overline{\psi}(x+\hat{k}L) &= \mathrm{e}^{-i\theta}\overline{\psi}(x) \end{split}$$

here we mainly use $\theta \in \{0, 0.5, 1\}$, where 0.5 is the angle in our dynamical configurations generated on apeNEXT @ DESY-Zeuthen

Framework

The Schrödinger functional as finite renorm. scheme

- periodic b.c. in space and Dirichlet in time
- fermion fields periodic in space up to a phase

$$\begin{split} \psi(x + \hat{k}L) &= e^{i\theta}\psi(x) \\ \overline{\psi}(x + \hat{k}L) &= e^{-i\theta}\overline{\psi}(x) \end{split}$$

here we mainly use $\theta \in \{0, 0.5, 1\}$, where 0.5 is the angle in our dynamical configurations generated on apeNEXT @ DESY-Zeuthen

- multiplicative renormalization scheme where the kinematical parameters L, T/L, θ fixes the renormalization prescription
- mass independent renormalization scheme
- $N_{
 m f}=2$ degenerate massless sea quarks $(m_{
 m l}\equiv m_{
 m light}=0)$
- correlation functions are build from heavy-light valence quarks; light quark mass is set to the sea-quark mass (~ 0)

 $x_0 = T$ $x_0 = 0$ C', ζ', ζ' C, ζ, ζ C, ζ, ζ L^3

SF correlation functions ...

Boundary-to-bulk:

$$\begin{split} f_{\rm A}(\mathbf{x}_0,\theta) &= -\frac{a^6}{2L^3} \sum_{\mathbf{x},\mathbf{y},\mathbf{z}} \left\langle \overline{\psi}_{\rm l}(\mathbf{x}) \gamma_0 \gamma_5 \psi_{\rm h}(\mathbf{x}) \zeta_{\rm h}(\mathbf{y}) \gamma_5 \zeta_{\rm l}(\mathbf{z}) \right\rangle \\ k_{\rm V}(\mathbf{x}_0,\theta) &= -\frac{a^6}{6L^3} \sum_{\mathbf{x},\mathbf{y},\mathbf{z},k} \left\langle \overline{\psi}_{\rm l}(\mathbf{x}) \gamma_k \psi_{\rm h}(\mathbf{x}) \zeta_{\rm h}(\mathbf{y}) \gamma_k \zeta_{\rm l}(\mathbf{z}) \right\rangle \end{split}$$

SF correlation functions ...

Boundary-to-bulk:

$$\begin{split} f_{\rm A}(\mathbf{x}_0,\theta) &= -\frac{a^6}{2L^3} \sum_{\mathbf{x},\mathbf{y},\mathbf{z}} \left\langle \overline{\psi}_{\rm l}(\mathbf{x}) \gamma_0 \gamma_5 \psi_{\rm h}(\mathbf{x}) \zeta_{\rm h}(\mathbf{y}) \gamma_5 \zeta_{\rm l}(\mathbf{z}) \right\rangle \\ k_{\rm V}(\mathbf{x}_0,\theta) &= -\frac{a^6}{6L^3} \sum_{\mathbf{x},\mathbf{y},\mathbf{z},k} \left\langle \overline{\psi}_{\rm l}(\mathbf{x}) \gamma_k \psi_{\rm h}(\mathbf{x}) \zeta_{\rm h}(\mathbf{y}) \gamma_k \zeta_{\rm l}(\mathbf{z}) \right\rangle \end{split}$$

Boundary-to-boundary:

$$f_{1}(\theta) = -\frac{a^{12}}{2L^{6}} \sum_{\mathbf{u}, \mathbf{v}, \mathbf{y}, \mathbf{z}} \left\langle \overline{\zeta}_{1}^{\prime}(\mathbf{u}) \gamma_{5} \zeta_{h}^{\prime}(\mathbf{v}) \zeta_{h}(\mathbf{y}) \gamma_{5} \zeta_{l}(\mathbf{z}) \right\rangle$$
$$k_{1}(\theta) = -\frac{a^{12}}{6L^{6}} \sum_{\mathbf{u}, \mathbf{v}, \mathbf{y}, \mathbf{z}, k} \left\langle \overline{\zeta}_{1}^{\prime}(\mathbf{u}) \gamma_{k} \zeta_{h}^{\prime}(\mathbf{v}) \zeta_{h}(\mathbf{y}) \gamma_{k} \zeta_{l}(\mathbf{z}) \right\rangle$$

and additionally $\mathit{f}_{\mathrm{P}}, \mathit{k}_{\mathrm{T}}$ to improve $\mathit{f}_{\mathrm{A}}, \mathit{k}_{\mathrm{V}}$ respectively

... and derived quantities ...

• provided that A_{μ} , V_{μ} denote *renormalized* currents,

$$\begin{split} Y_{\rm PS}(L,M) &\equiv + \frac{f_{\rm A}(T/2)}{\sqrt{f_1}} \,, \qquad Y_{\rm V}(L,M) \equiv - \frac{k_{\rm V}(T/2)}{\sqrt{k_1}} \,, \\ R_{\rm PS/V}(L,M) &\equiv - \frac{f_{\rm A}(T/2)}{k_{\rm V}(T/2)} \,, \quad R_{\rm PS/P}(L,M) \equiv - \frac{f_{\rm A}(T/2)}{f_{\rm P}(T/2)} \,, \end{split}$$

are finite quantities

• in the O(a) improved lattice theory this amounts to replace e.g.

$${\cal A}_{\mu}
ightarrow Z_{
m A} [1 + rac{1}{2} b_{
m A} ({\it am}_{
m q,l} + {\it am}_{
m q,h})] imes {\cal A}_{\mu}$$

... and derived quantities

▶ for the same purpose effective energies are defined by

$$\begin{split} \Gamma_{\rm PS}(L,M) &\equiv -\frac{\mathrm{d}}{\mathrm{d}x_0} \ln\left[f_{\rm A}(x_0)\right] \bigg|_{x_0=T/2} = -\frac{f_{\rm A}'(T/2)}{f_{\rm A}(T/2)},\\ \Gamma_{\rm V}(L,M) &\equiv -\frac{\mathrm{d}}{\mathrm{d}x_0} \ln\left[k_{\rm V}(x_0)\right] \bigg|_{x_0=T/2} = -\frac{k_{\rm V}'(T/2)}{k_{\rm V}(T/2)},\\ \Gamma_{\rm av}(L,M) &\equiv \frac{1}{4} \big[\Gamma_{\rm PS}(L,M) + 3\Gamma_{\rm V}(L,M)\big]\\ R_{\rm spin}(L,M) &\equiv \ln(f_1/k_1) \end{split}$$

- meaning of the observables from their large-volume behaviour (up to normalizations)
 - $L \to \infty$: $Y_{\rm PS}, Y_{\rm V} \to F_{\rm PS}, F_{\rm V}$: heavy-light decay constant, $R_{
 m spin} \to m_{\rm B_0^*} - m_{\rm B_0}$: mass splitting

Effective theory predictions

at the classical level:

- current matrix elements expected to posses a power series expansion in $1/z \equiv 1/(LM)$
- ▶ leading term in expansion of CFs by replacing $\psi_b \rightarrow \psi_h$ & dropping O(1/m) terms \rightsquigarrow static limit

$$f_{\rm A} \to f_{\rm A}^{\rm stat} \qquad \frac{f_{\rm A}^{\rm stat}(T/2)}{\sqrt{f_1^{\rm stat}}} \equiv X(L) = \lim_{z \to \infty} Y_{\rm PS}(L, M)$$
$$= \lim_{z \to \infty} Y_{\rm V}(L, M)$$

due to heavy quark spin-symmetry $(A_0^{\text{stat}} \Leftrightarrow V_k^{\text{stat}})$

Effective theory predictions

correspondence of HQET and QCD in quantum theory:

scale dependent ren. of HQET implies logarithmic modifications

axial current renorm. $X_R(L) = Z_A^{\text{stat}}(\mu) X_{\text{bare}}(L)$

depends logarithmically on the chosen renorm. scale μ

 no scheme dependence when going over to renormalization group invariants (RGI)

$$\lim_{\mu \to \infty} \left\{ [2b_0 \bar{g}^2(\mu)]^{-\gamma_0/(2b_0)} X_R(L,\mu) \right\} = X_{\mathrm{RGI}} = Z_{\mathrm{RGI}} X_{\mathrm{bare}}(L)$$

where
$$b_0 = rac{11-2N_{
m f}/3}{(4\pi)^2}$$
 , $\gamma_0 = -rac{1}{(4\pi)^2}$,

are first order coeff.s of β and of the anomalous dimension of the axial current, respectively

 large-mass behaviour of the QCD observables: (RGIs of the eff. theory)×(logarithmically mass dependent functions C)

Conversion to the matching scheme

translation to another renormalization scheme

Definition of the matching scheme: for arbitrary renormalized matrix elements Φ_R in QCD & the effective theory it should hold

$$\Phi_{\mathrm{R}}^{\mathrm{QCD}} = \Phi_{\mathrm{R}}^{\mathrm{HQET}}(\mu)\Big|_{\mu=m} + O(1/m)$$

▶ in perturbative QCD, *m* typically can either be the pole mass m_Q or the $\overline{\text{MS}}$ mass \overline{m}_*

Conversion to the matching scheme

translation to another renormalization scheme

Definition of the matching scheme: for arbitrary renormalized matrix elements Φ_R in QCD & the effective theory it should hold

$$\Phi_{\mathrm{R}}^{\mathrm{QCD}} = \Phi_{\mathrm{R}}^{\mathrm{HQET}}(\mu)\Big|_{\mu=m} + O(1/m)$$

• in perturbative QCD, *m* typically can either be the pole mass m_Q or the $\overline{\text{MS}}$ mass \overline{m}_*

example: static axial current; the conversion factor for $X_{\rm RGI}$ to Φ in this scheme is

$$\widehat{C}_{\rm PS}(\mu) = \left[2b_0\bar{g}^2(\mu)\right]^{\frac{\gamma_0}{2b_0}} \exp\left\{\left.\int_0^{\bar{g}(\mu)} \mathrm{d}g\left[\frac{\gamma(g)}{\beta(g)} - \frac{\gamma_0}{b_0g}\right]\right\}\right|_{\mu=\bar{m}_*}$$

 $\mu \frac{\partial \Phi}{\partial \mu} = \gamma(g) \Phi$, $\gamma \equiv \gamma^{\text{match}}$: anomalous dim. in the matching scheme $\gamma(g) = \gamma^{\overline{\text{MS}}}(g) + \rho(g)$, ρ : matching of $\overline{\text{MS}}$ -renorm. HQET operators in QCD

Matching coefficients $C_X(\Lambda_{\overline{\mathrm{MS}}}/\mathsf{M})$

more convenient choice of the argument of the conversion functions \hat{C}_X :

- ► change argument of \widehat{C}_X to the ratio of RGIs, $M/\Lambda_{\overline{\mathrm{MS}}}$ ⇒ functions $C_X(M/\Lambda_{\overline{\mathrm{MS}}})$
- ► M = RGI quark mass, advantage: fixed in lattice calculations without perturbative uncertainties

one then expects the (heavy) quark mass dependence to obey

Ċms

$$\begin{split} Y_X(L,M) &\stackrel{M \to \infty}{\sim} \quad C_X\left(M/\Lambda_{\overline{\mathrm{MS}}}\right) X_{\mathrm{RGI}}(L) \left(1 + \mathrm{O}(1/z)\right), \qquad \substack{X = \mathrm{PS}, \mathrm{V}, \\ z = ML, } \\ R_{\mathrm{PS}/?}(L,M) &\stackrel{M \to \infty}{\sim} \quad C_{\mathrm{PS}/?}\left(M/\Lambda_{\overline{\mathrm{MS}}}\right) \left[1\right] \left(1 + \mathrm{O}(1/z)\right), \qquad ? = \mathrm{V}, \mathrm{P}, \\ R_{\mathrm{spin}}(L,M) &\stackrel{M \to \infty}{\sim} \quad C_{\mathrm{spin}}\left(M/\Lambda_{\overline{\mathrm{MS}}}\right) \frac{X_{\mathrm{RGI}}^{\mathrm{spin}}(L)}{z} \left(1 + \mathrm{O}(1/z)\right), \qquad ? = \mathrm{V}, \mathrm{P}, \\ L\Gamma_{\mathrm{av}}(L,M) &\stackrel{M \to \infty}{\sim} \quad C_{\mathrm{mass}}\left(M/\Lambda_{\overline{\mathrm{MS}}}\right) \times z + \mathrm{O}(1), \\ \mathrm{ass}\left(M/\Lambda_{\overline{\mathrm{MS}}}\right) \equiv \frac{m_Q}{M} = \frac{\overline{m}(\overline{m}_*)}{M} \frac{m_Q}{\overline{m}(\overline{m}_*)} \end{split}$$

Matching coefficients $C_X(\Lambda_{\overline{\mathrm{MS}}}/\mathsf{M})$

 $C_{\rm X}$: integrate perturbative RG equations (in the effective theory) in the matching scheme, using 4-loop $\beta(g)$, $\tau(g)$

▶ 3-loop $\gamma_2^{\overline{\text{MS}}}$ anomalous dimension (AD) from [Chetyrkin&Grozin,2003]

► $C_{\rm spin}$ constructed from the AD of $\overline{\psi}_{\rm h}(x) \, \sigma {f B} \psi_{\rm h}(x)$; 3-lp γ known

Results

Continuum extrapolations ...

Results

Continuum extrapolations and asymtotics ...

Results

Continuum extrapolations with asymptotics and universality

Conclusions & perspectives

conclusions that can be drawn (maybe):

- ▶ nearly linear (1/z)-behaviour down to $1/z = 0.1 \leftrightarrow M \sim 4$ GeV for all observables investigated so far
- $(1/z)^2$ corrections in spin splitting very small over the whole range of z covered
- slope in continuum extrapolations nearly equal for all z's in each observable seperately
- ► overall behaviour similar to quenched ~→ NP matching of QCD and HQET should also be as well behaved as in the quenched case

Conclusions & perspectives

conclusions that can be drawn (maybe):

- ▶ nearly linear (1/z)-behaviour down to $1/z = 0.1 \leftrightarrow M \sim 4$ GeV for all observables investigated so far
- $(1/z)^2$ corrections in spin splitting very small over the whole range of z covered
- slope in continuum extrapolations nearly equal for all z's in each observable seperately
- ► overall behaviour similar to quenched ~→ NP matching of QCD and HQET should also be as well behaved as in the quenched case

what still need to be done:

- continuum limit and 1/z-dependence of heavy-light decay constant (needs additional computations in HQET)
- correlated fits for a reliable error estimate all z's at constant L computed on the same gauge background
- 3-loop $\gamma^{\rm spin}$ is available \rightsquigarrow implement it

Thank you for your attention.

PCAC mass in the SF

at *L*/*a* = 40

recent observation in $R_{\rm PS/V}(x_0, z)$

recent observation in $R_{\rm PS/V}(x_0, z)$

