Non-perturbative quark mass dependence in the heavy-light sector of two-flavour QCD

\# ${ }_{\text {LPHA }}$
 Collaboration

Patrick Fritzsch*

in collaboration with J. Heitger \& R. Sommer
*Westfälische Wilhelms-Universität Münster, Institut für Theoretische Physik $\$$

Lattice 2008, College of William \& Mary Williamsburg, Virginia, USA, 2008 July 14-19

Motivation

$$
\mathcal{L}_{\mathrm{HQET}}(x)=\bar{\psi}_{\mathrm{h}}(x)[\underbrace{D_{0}+m}_{\text {static limit }}-\frac{\omega_{\text {kin }}}{2 m} \mathbf{D}^{2}-\frac{\omega_{\text {spin }}}{2 m} \sigma \mathbf{B}] \psi_{\mathrm{h}}(x)+\ldots,
$$

m : heavy quark mass

- systematic expansion in $1 / m$, accurate for $m \gg \Lambda_{\mathrm{QCD}}$, renormalizable \& has a continuum limit
- matching $\left\{m, \omega_{\text {spin }}, \cdots\right\} \Leftrightarrow\{$ QCD parameters $\}$ required to make HQET an effective theory of QCD
- consider HQET as expansion of QCD in $1 / z \equiv 1 /(L M)$ and verify that its large-z behaviour complies with HQET
- tests may justify interpolations between the charm region (slightly above of it) and the static limit to the b-scale also in large-volume physics applications, e.g. to determine F_{B} [Alpha:JHEP02(2008)078]
- comparison to tests of quenched QCD [Heitger etal:JHEP11(2004)048]

Requirements

Finetuning

- line of constant physics; within our strategy to do a NP matching between QCD and HQET, we are working at

$$
\bar{g}^{2}\left(L_{1}\right) \approx 4.484 \quad L_{1} m_{1} \approx 0 \quad z \equiv L_{1} M \approx \text { const }
$$

M : renormalization group invariant heavy quark mass

- connection between bare \& renormalized parameters of the theory \rightsquigarrow knowledge of improvement coeff. and renormalization constants crucial to invert

$$
z\left(\kappa_{\mathrm{h}}\right) \equiv L_{1} M=L_{1} Z_{\mathrm{M}} \widetilde{m}_{\mathrm{q}, \mathrm{~h}}=L_{1} Z_{\mathrm{M}} m_{\mathrm{q}, \mathrm{~h}}\left(1+b_{\mathrm{m}} a m_{\mathrm{q}, \mathrm{~h}}\right)
$$

with $a m_{\mathrm{q}, \mathrm{h}}=\left(\kappa_{\mathrm{h}}^{-1}-\kappa_{\mathrm{c}}^{-1}\right) / 2, L_{1} / a \in\{20,24,32,40\}$. Quadratic equation with solutions

$$
\kappa_{\mathrm{h}}(z)=\left[\frac{1}{\kappa_{\mathrm{c}}}-\frac{1}{b_{\mathrm{m}}}\left(1-\sqrt{1+z \cdot \frac{4 b_{\mathrm{m}}}{\left(L_{1} / a\right) Z_{\mathrm{M}}}}\right)\right]^{-1}
$$

restricts $z\left(L_{1}\right)<-\left(L_{1} / a\right) Z_{M} /\left(4 b_{m}\right)$.

Simulation parameters

- b_{m} and Z_{M} non-perturbatively computed by the Alpha-collaboration [Della Morte etal:PoS(LATTICE 2007)246]
$\Rightarrow z<22$ possible for $L_{1}=24,32,40$ and $z<17$ for $L_{1}=20$
- we choose $\mathbf{z} \in\{4,6,7,9,11,13,15,18,21\}$ to cover a wide range of masses $\leftrightarrow M \sim(1.5, \ldots, 8.3) \mathrm{GeV}$ (reference scale $L^{*} \approx 0.6 \mathrm{fm}$ from [Alpha:JHEP07(2008)037])

L_{1} / a	β	κ_{c}	$L_{1} m_{1}$
20	6.1906	0.135997290	$+0.00055(13)$
24	6.3158	0.135772110	$-0.000145(66)$
32	6.5113	0.135421494	$+0.000143(36)$
40	6.6380	0.135192285	$+0.000024(24)$

Framework

The Schrödinger functional as finite renorm. scheme

- periodic b.c. in space and Dirichlet in time
- fermion fields periodic in space up to a phase

$$
\begin{aligned}
& \psi(x+\hat{k} L)=\mathrm{e}^{i \theta} \psi(x) \\
& \bar{\psi}(x+\hat{k} L)=\mathrm{e}^{-i \theta} \bar{\psi}(x)
\end{aligned}
$$

here we mainly use $\theta \in\{0,0.5,1\}$, where 0.5 is the angle in our dynamical configurations generated on apeNEXT @ DESY-Zeuthen

Framework

The Schrödinger functional as finite renorm. scheme

- periodic b.c. in space and Dirichlet in time
- fermion fields periodic in space up to a phase

$$
\begin{aligned}
\psi(x+\hat{k} L) & =\mathrm{e}^{i \theta} \psi(x) \\
\bar{\psi}(x+\hat{k} L) & =\mathrm{e}^{-i \theta} \bar{\psi}(x)
\end{aligned}
$$

here we mainly use $\theta \in\{0,0.5,1\}$, where 0.5 is the angle in our dynamical configurations generated on apeNEXT @ DESY-Zeuthen

$$
x_{0}=T \underbrace{C}_{L^{3}}
$$

- multiplicative renormalization scheme where the kinematical parameters $L, T / L, \theta$ fixes the renormalization prescription
- mass independent renormalization scheme
- $N_{\mathrm{f}}=2$ degenerate massless sea quarks $\left(m_{\mathrm{l}} \equiv m_{\text {light }}=0\right)$
- correlation functions are build from heavy-light valence quarks; light quark mass is set to the sea-quark mass (~ 0)

Finite volume observables

SF correlation functions ...

Boundary-to-bulk:

$$
\begin{aligned}
& f_{\mathrm{A}}\left(x_{0}, \theta\right)=-\frac{a^{6}}{2 L^{3}} \sum_{\mathbf{x}, \mathbf{y}, \mathbf{z}}\left\langle\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{h}}(x) \zeta_{\mathrm{h}}(\mathbf{y}) \gamma_{5} \zeta_{1}(\mathbf{z})\right\rangle \\
& k_{\mathrm{V}}\left(x_{0}, \theta\right)=-\frac{a^{6}}{6 L^{3}} \sum_{\mathbf{x}, \mathbf{y}, \mathbf{z}, k}\left\langle\bar{\psi}_{1}(x) \gamma_{k} \psi_{\mathrm{h}}(x) \zeta_{\mathrm{h}}(\mathbf{y}) \gamma_{k} \zeta_{1}(\mathbf{z})\right\rangle
\end{aligned}
$$

Finite volume observables

SF correlation functions ...

Boundary-to-bulk:

$$
\begin{aligned}
& f_{\mathrm{A}}\left(x_{0}, \theta\right)=-\frac{a^{6}}{2 L^{3}} \sum_{\mathrm{x}, \mathbf{y}, \mathbf{z}}\left\langle\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{h}}(x) \zeta_{\mathrm{h}}(\mathbf{y}) \gamma_{5} \zeta_{1}(\mathbf{z})\right\rangle \\
& k_{\mathrm{V}}\left(x_{0}, \theta\right)=-\frac{a^{6}}{6 L^{3}} \sum_{\mathrm{x}, \mathbf{y}, \mathbf{z}, \mathrm{k}}\left\langle\bar{\psi}_{1}(x) \gamma_{k} \psi_{\mathrm{h}}(x) \zeta_{\mathrm{h}}(\mathbf{y}) \gamma_{k} \zeta_{1}(\mathbf{z})\right\rangle
\end{aligned}
$$

Boundary-to-boundary:

$$
\begin{aligned}
& f_{1}(\theta)=-\frac{a^{12}}{2 L^{6}} \sum_{\mathbf{u}, \mathbf{v}, \mathbf{y}, \mathbf{z}}\left\langle\bar{\zeta}_{1}^{\prime}(\mathbf{u}) \gamma_{5} \zeta_{\mathrm{h}}^{\prime}(\mathbf{v}) \zeta_{\mathrm{h}}(\mathbf{y}) \gamma_{5} \zeta_{1}(\mathbf{z})\right\rangle \\
& k_{1}(\theta)=-\frac{a^{12}}{6 L^{6}} \sum_{\mathbf{u}, \mathbf{v}, \mathbf{y}, \mathbf{z}, k}\left\langle\bar{\zeta}_{1}^{\prime}(\mathbf{u}) \gamma_{k} \zeta_{\mathrm{h}}^{\prime}(\mathbf{v}) \zeta_{\mathrm{h}}(\mathbf{y}) \gamma_{k} \zeta_{1}(\mathbf{z})\right\rangle
\end{aligned}
$$

and additionally $f_{\mathrm{P}}, k_{\mathrm{T}}$ to improve $f_{\mathrm{A}}, k_{\mathrm{V}}$ respectively

$\exists_{\text {IPHA }}$

Finite volume observables

... and derived quantities ...

- provided that A_{μ}, V_{μ} denote renormalized currents,

$$
\begin{aligned}
Y_{\mathrm{PS}}(L, M) & \equiv+\frac{f_{\mathrm{A}}(T / 2)}{\sqrt{f_{1}}}, \quad Y_{\mathrm{V}}(L, M) \equiv-\frac{k_{\mathrm{V}}(T / 2)}{\sqrt{k_{1}}}, \\
R_{\mathrm{PS} / \mathrm{V}}(L, M) & \equiv-\frac{f_{\mathrm{A}}(T / 2)}{k_{\mathrm{V}}(T / 2)}, \quad R_{\mathrm{PS} / \mathrm{P}}(L, M) \equiv-\frac{f_{\mathrm{A}}(T / 2)}{f_{\mathrm{P}}(T / 2)},
\end{aligned}
$$

are finite quantities

- in the $O(a)$ improved lattice theory this amounts to replace e.g.

$$
A_{\mu} \rightarrow Z_{\mathrm{A}}\left[1+\frac{1}{2} b_{\mathrm{A}}\left(a m_{\mathrm{q}, \mathrm{l}}+a m_{\mathrm{q}, \mathrm{~h}}\right)\right] \times A_{\mu}
$$

Finite volume observables

... and derived quantities

- for the same purpose effective energies are defined by

$$
\begin{aligned}
\Gamma_{\mathrm{PS}}(L, M) & \equiv-\left.\frac{\mathrm{d}}{\mathrm{~d} x_{0}} \ln \left[f_{\mathrm{A}}\left(x_{0}\right)\right]\right|_{x_{0}=T / 2}=-\frac{f_{\mathrm{A}}^{\prime}(T / 2)}{f_{\mathrm{A}}(T / 2)} \\
\Gamma_{\mathrm{V}}(L, M) & \equiv-\left.\frac{\mathrm{d}}{\mathrm{~d} x_{0}} \ln \left[k_{\mathrm{V}}\left(x_{0}\right)\right]\right|_{x_{0}=T / 2}=-\frac{k_{\mathrm{V}}^{\prime}(T / 2)}{k_{\mathrm{V}}(T / 2)} \\
\Gamma_{\mathrm{av}}(L, M) & \equiv \frac{1}{4}\left[\Gamma_{\mathrm{PS}}(L, M)+3 \Gamma_{\mathrm{V}}(L, M)\right] \\
R_{\mathrm{spin}}(L, M) & \equiv \ln \left(f_{1} / k_{1}\right)
\end{aligned}
$$

- meaning of the observables from their large-volume behaviour (up to normalizations)
$L \rightarrow \infty: \quad Y_{\mathrm{PS}}, Y_{\mathrm{V}} \rightarrow F_{\mathrm{PS}}, F_{\mathrm{V}} \quad$: heavy-light decay constant,

$$
R_{\text {spin }} \rightarrow m_{\mathrm{B}_{0}^{*}}-m_{\mathrm{B}_{0}} \quad: \text { mass splitting }
$$

Effective theory predictions

at the classical level:

- current matrix elements expected to posses a power series expansion in $1 / z \equiv 1 /(L M)$
- leading term in expansion of CFs by replacing $\psi_{\mathrm{b}} \rightarrow \psi_{\mathrm{h}}$ \& dropping $\mathrm{O}(1 / \mathrm{m})$ terms \rightsquigarrow static limit

$$
\begin{aligned}
f_{\mathrm{A}} \rightarrow f_{\mathrm{A}}^{\mathrm{stat}} \quad \frac{f_{\mathrm{A}}^{\mathrm{stat}}(T / 2)}{\sqrt{f_{1}^{\text {stat }}}} \equiv X(L) & =\lim _{z \rightarrow \infty} Y_{\mathrm{PS}}(L, M) \\
& =\lim _{z \rightarrow \infty} Y_{\mathrm{V}}(L, M)
\end{aligned}
$$

due to heavy quark spin-symmetry $\left(A_{0}^{\text {stat }} \Leftrightarrow V_{k}^{\text {stat }}\right)$

Effective theory predictions

 correspondence of HQET and QCD in quantum theory:- scale dependent ren. of HQET implies logarithmic modifications

$$
\text { axial current renorm. } \quad X_{R}(L)=Z_{\mathrm{A}}^{\text {stat }}(\mu) X_{\text {bare }}(L)
$$

depends logarithmically on the chosen renorm. scale μ

- no scheme dependence when going over to renormalization group invariants (RGI)

$$
\begin{gather*}
\lim _{\mu \rightarrow \infty}\left\{\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-\gamma_{0} /\left(2 b_{0}\right)} X_{R}(L, \mu)\right\}=X_{\mathrm{RGI}}=Z_{\mathrm{RGI}} X_{\mathrm{bare}}(L) \tag{L}\\
\text { where } \quad b_{0}=\frac{11-2 N_{\mathrm{f}} / 3}{(4 \pi)^{2}}, \quad \gamma_{0}=-\frac{1}{(4 \pi)^{2}}
\end{gather*}
$$

are first order coeff.s of β and of the anomalous dimension of the axial current, respectively

- large-mass behaviour of the QCD observables:
(RGIs of the eff. theory) \times (logarithmically mass dependent functions C)

Conversion to the matching scheme

translation to another renormalization scheme
Definition of the matching scheme: for arbitrary renormalized matrix elements Φ_{R} in QCD \& the effective theory it should hold

$$
\Phi_{\mathrm{R}}^{\mathrm{QCD}}=\left.\Phi_{\mathrm{R}}^{\mathrm{HQET}}(\mu)\right|_{\mu=m}+O(1 / m)
$$

- in perturbative QCD, m typically can either be the pole mass m_{Q} or the $\overline{\mathrm{MS}}$ mass \bar{m}_{*}

Conversion to the matching scheme

translation to another renormalization scheme
Definition of the matching scheme: for arbitrary renormalized matrix elements Φ_{R} in QCD \& the effective theory it should hold

$$
\Phi_{\mathrm{R}}^{\mathrm{QCD}}=\left.\Phi_{\mathrm{R}}^{\mathrm{HQET}}(\mu)\right|_{\mu=m}+O(1 / m)
$$

- in perturbative QCD, m typically can either be the pole mass m_{Q} or the $\overline{\mathrm{MS}}$ mass \bar{m}_{*}
example: static axial current; the conversion factor for $X_{\text {RGI }}$ to Φ in this scheme is

$$
\begin{aligned}
\widehat{C}_{\mathrm{PS}}(\mu) & =\left.\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{\frac{\gamma_{0}}{2 b_{0}}} \exp \left\{\int_{0}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma(g)}{\beta(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}\right|_{\mu=\bar{m}_{*}} \\
\mu \frac{\partial \Phi}{\partial \mu} & =\gamma(g) \Phi, \quad \gamma \equiv \gamma^{\text {match }}: \text { anomalous dim. in the matching scheme } \\
\gamma(g) & =\gamma^{\overline{\mathrm{MS}}}(g)+\rho(g), \quad \rho \text { : matching of } \overline{\text { MS-renorm. HQET operators in QCD }}
\end{aligned}
$$

Matching coefficients $\mathrm{C}_{\mathrm{X}}\left(\Lambda_{\overline{\mathrm{MS}}} / \mathrm{M}\right)$

more convenient choice of the argument of the conversion functions \widehat{C}_{X} :

- change argument of \widehat{C}_{X} to the ratio of RGls, $M / \Lambda_{\overline{M S}}$ \Rightarrow functions $C_{X}\left(M / \Lambda_{\overline{\mathrm{MS}}}\right)$
- $M=$ RGI quark mass, advantage: fixed in lattice calculations without perturbative uncertainties

one then expects the (heavy) quark mass dependence to obey

$$
\begin{array}{rlr}
Y_{X}(L, M) \stackrel{M \rightarrow \infty}{\sim} C_{\mathrm{X}}\left(M / \Lambda_{\overline{\mathrm{MS}}}\right) X_{\mathrm{RGI}}(L)(1+\mathrm{O}(1 / z)), & \begin{array}{r}
x=\mathrm{PS}, \mathrm{~V}, \\
z=M L,
\end{array} \\
R_{\mathrm{PS} / ?}(L, M) \stackrel{M \rightarrow \infty}{\sim} & C_{\mathrm{PS} / ?}\left(M / \Lambda_{\overline{\mathrm{MS}}}\right)[1](1+\mathrm{O}(1 / z)), & ?=\mathrm{V}, \mathrm{P}, \\
R_{\mathrm{spin}}(L, M) & M \rightarrow \infty & C_{\mathrm{spin}}\left(M / \Lambda_{\overline{\mathrm{MS}}}\right) \frac{X_{\mathrm{RGI}}^{\mathrm{spin}}(L)}{z}(1+\mathrm{O}(1 / z)),
\end{array}
$$

Matching coefficients $\mathrm{C}_{\mathrm{X}}\left(\Lambda_{\overline{\mathrm{MS}}} / \mathrm{M}\right)$

C_{X} : integrate perturbative RG equations (in the effective theory) in the matching scheme, using 4-loop $\beta(g), \tau(g)$

- 3-loop $\gamma_{2}^{\overline{\mathrm{MS}}}$ anomalous dimension (AD) from [Chetyrkin\&Grozin,2003]
- $C_{\text {spin }}$ constructed from the AD of $\bar{\psi}_{\mathrm{h}}(x) \sigma \mathrm{B} \psi_{\mathrm{h}}(x) ;$ 3-lp γ known

Results

Continuum extrapolations ...

Results

Continuum extrapolations and asymtotics ...

Results

Continuum extrapolations with asymptotics and universality

$\exists_{\text {ELPHAA }}$

Conclusions \& perspectives

conclusions that can be drawn (maybe):

- nearly linear ($1 / z$)-behaviour down to $1 / z=0.1 \leftrightarrow M \sim 4 \mathrm{GeV}$ for all observables investigated so far
- $(1 / z)^{2}$ corrections in spin splitting very small over the whole range of z covered
- slope in continuum extrapolations nearly equal for all z's in each observable seperately
- overall behaviour similar to quenched \rightsquigarrow NP matching of QCD and HQET should also be as well behaved as in the quenched case

Conclusions \& perspectives

conclusions that can be drawn (maybe):

- nearly linear ($1 / z$)-behaviour down to $1 / z=0.1 \leftrightarrow M \sim 4 \mathrm{GeV}$ for all observables investigated so far
- $(1 / z)^{2}$ corrections in spin splitting very small over the whole range of z covered
- slope in continuum extrapolations nearly equal for all z's in each observable seperately
- overall behaviour similar to quenched \rightsquigarrow NP matching of QCD and HQET should also be as well behaved as in the quenched case what still need to be done:
- continuum limit and $1 / z$-dependence of heavy-light decay constant (needs additional computations in HQET)
- correlated fits for a reliable error estimate - all z's at constant L computed on the same gauge background
- 3-loop $\gamma^{\text {spin }}$ is available \rightsquigarrow implement it

Thank you for your attention.

PCAC mass in the SF

at $L / a=40$

recent observation in $R_{\mathrm{PS} / \mathrm{V}}\left(x_{0}, z\right)$

recent observation in $R_{\mathrm{PS} / \mathrm{V}}\left(x_{0}, z\right)$

$\exists_{\text {LLPHAA }}$

