Fractionally charged Wilson loops as a probe of θ -dependence in CP^(N-1) sigma models

> Patrick Keith-Hynes, Harry B. Thacker University of Virginia

arXiv:0804.1534

XXVI International Symposium on Lattice Field Theory July 17, 2008

Outline

- Background techniques for calculation at nonzero θ
- Observation: In d=2 U(1) gauge theory a Wilson loop with fractional charge $q=\theta/2\pi$ is equivalent to including a θ -term within the loop.
- Fractionally charged Wilson loops on the lattice
- Predicted behavior of vacuum free energy $\varepsilon(\theta)$ vs N
- Calculated value of topological susceptibility vs N
- Lattice results: free energy density $\varepsilon(\theta)$ for CP¹, CP⁵ and CP⁹
- Conclusions

The CP^(N-1) model with a θ -term N scalar fields z_i with $z_i^* z^i = 1$ $\mathcal{L} = \beta N(D_{\mu} z_{i})^{*} (D_{\mu} z^{i}) - i(\theta/2\pi) \varepsilon_{\mu\nu} \partial_{\mu} A_{\nu\nu}$ $D_{\mu} = \partial_{\mu} + iA_{\mu}$ $A_{\mu} = (i/2)(z_i * \partial_{\mu} z^i - \partial_{\mu} z_i * z^i)$ $\mu = 0..1$ i = 1..N

Lattice calculation at nonzero θ

$$\mathcal{L} = \beta N(D_{\mu}z_{i})^{*}(D_{\mu}z^{i}) - i(\theta/2\pi)\varepsilon_{\mu\nu}\partial_{\mu}A_{\nu}$$

- Imaginary θ term makes usual MC simulation impossible
- Some alternative approaches:
 - Burkehalter, Imachi, Shinno and Yoneyama, "CP^{N-1} Models with a θ Term and a Fixed Point Action"
 - Azcoiti, Di Carlo, Galante and Laliena, " θ dependence of the CP⁹ model"
 - Beard, Pepe, Riederer and Wiese, "Study of CP(N-1) θ-Vacua by Cluster-Simulation of SU(N) Quantum Spin Ladders"
 - Imachi, Kambayashi, Shinno and Yoneyama, "The Theta-term, CP(N-1) model and the inversion approach to the imaginary Theta method"
- Recent review paper by Vicari and Panagopoulos, "θ-dependence of SU(N) gauge theories in the presence of a topological term", arXiv:0803.1593v3, April 17, 2008.

Fractionally charged Wilson Loop

We calculate the expectation of a Wilson loop with fractional charge $q \in [0:1]$

$$\langle W_{C}(q)\rangle = \int dA \, exp[-iq \oint A \cdot dx] e^{-S[A]}$$

Using Stokes' theorem with $\theta = 2\pi q$

$$q \oint A \cdot dx = q \int d^2 x \, \varepsilon_{\mu\nu} \partial_{\mu} A_{\nu} = \theta \int d^2 x \, Q(x)$$

The expectation of the Wilson loop is proportional to the partition function $Z(\theta)$ for the volume V within the loop.

$$\langle W_{C}(q) \rangle = \int dA \, \exp[-i\theta \int d^{2}x \, Q(x)] \, e^{-S[A]} \\ \sim \exp[\varepsilon(\theta) - \varepsilon(\theta)] V$$

Wilson loops on the lattice

The Wilson loop is proportional to the partition function of a θ vacuum within the loop.

Wilson loops and confinement

A Wilson loop can be thought of as the correlator of a pair of strings of spatial extent R connecting test charges.

In d=2 $CP^{(N-1)}$ the potential is linear in R, and so a fractionally charged Wilson loop will have the form

$$e^{-V(R)T} = e^{-\varepsilon(\theta)RT} = e^{-\varepsilon(\theta)V}$$

Predictions for $\varepsilon(\theta)$ and N

•
$$\varepsilon(\theta) = \varepsilon(\theta + 2\pi k) \quad k \in \mathbb{Z}$$

• Small N (N < 4) - dilute instanton gas

$$\varepsilon(\theta) - \varepsilon(\theta) = \chi_{t}(1 - \cos\theta)$$

• Large N (N > 4) - instantons disappear, symmetry about $\theta = \pi$ requires string breaking

$$\varepsilon(\theta) - \varepsilon(\theta) = (1/2)\chi_t \min_{k \in Z} (\theta - 2\pi k)^2$$

Measured value of χ_t compared to large-N prediction

V(R) for CP¹, CP⁵ and CP⁹ for $R \in [3:8]$

V(R) for CP¹ with q=0.3 for R \in [3:8]

V(R) for CP⁵ with q=0.3 for R \in [3:8]

V(R) for CP⁹ with q=0.3 for R \in [3:8]

CP¹: $\beta = 1.2 \mu = 0.179(3) 18,634 \text{ confs}$ CP⁵: $\beta = 0.9 \mu = 0.186(3) 9,312 \text{ confs}$ CP⁹: $\beta = 0.8 \mu = 0.212(2) 15,059 \text{ confs}$ Lattice 2008

$\varepsilon(\theta) \quad 0 \le \theta \le 2\pi \text{ for } \mathbb{CP}^1$

$\varepsilon(\theta) \quad 0 \le \theta \le \pi \text{ for } \mathbb{CP}^1$

$\varepsilon(\theta) \ 0 \le \theta \le \pi \text{ for } \mathbb{CP}^5$

 θ

$\varepsilon(\theta) \ 0 \le \theta \le \pi$ for CP⁹

Conclusions

- In CP^(N-1) fractionally charged Wilson loops can serve as a useful probe of $\varepsilon(\theta)$ throughout the entire range $0 < \theta < 2\pi$
- For $CP^1 \varepsilon(\theta)$ is consistent with the dilute instanton gas approximation for $0 < \theta < 2\pi$
- For CP⁹ $\epsilon(\theta)$ closely follows the large N prediction for $0 < \theta < 2\pi$
- We see no evidence for string breaking in CP⁵ or CP⁹ in the loops we have studied (up to 10x10)