Proton decay matrix elements from chirally symmetric lattice QCD

\triangleright Paul Cooney, The University of Edinburgh
\triangleright The XXVI International Symposium on Lattice Field Theory

Introduction

What to Measure

Simulation Details

Results
Non Perturbative Renormalization
Summary and Outlook

- Proton decay is a distinctive signature of many Grand Unified Theories
- Experiments such as Super-Kamiokande are searching for proton decay
- The current minimum bound on the proton lifetime from Super-Kamiokande is 8.2×10^{33} years

Proton decay matrix elements from chirally symmetric lattice QCD

- Proton decay is a distinctive signature of many Grand Unified Theories
- Experiments such as Super-Kamiokande are searching for proton decay

$>$ The current minimum bound on the proton lifetime from Super-Kamiokande is 8.2×10^{33} years
- Proton decay is a distinctive signature of many Grand Unified Theories
- Experiments such as Super-Kamiokande are searching for proton decay

- The current minimum bound on the proton lifetime from Super-Kamiokande is 8.2×10^{33} years

For a generic decay channel, the partial decay width is:

$$
\Gamma(p \rightarrow m+\bar{l})=\left[\frac{m_{p}}{32 \pi^{2}}\left(1-\left(\frac{m_{m}}{m_{p}}\right)^{2}\right)\right]\left|\sum_{i} C^{i} W_{0}^{i}(p \rightarrow m+\bar{l})\right|^{2}
$$

For a generic decay channel, the partial decay width is:

$$
\Gamma(p \rightarrow m+\bar{l})=\left[\frac{m_{p}}{32 \pi^{2}}\left(1-\left(\frac{m_{m}}{m_{p}}\right)^{2}\right)\right]\left|\sum_{i} C^{i} W_{0}^{i}(p \rightarrow m+\bar{l})\right|^{2}
$$

For a generic decay channel, the partial decay width is:

$$
\Gamma(p \rightarrow m+\bar{l})=\left[\frac{m_{p}}{32 \pi^{2}}\left(1-\left(\frac{m_{m}}{m_{p}}\right)^{2}\right)\right]\left|\sum_{i} C^{i} W_{0}^{i}(p \rightarrow m+\bar{l})\right|^{2}
$$

For a generic decay channel, the partial decay width is:

$$
\Gamma(p \rightarrow m+\bar{l})=\left[\frac{m_{p}}{32 \pi^{2}}\left(1-\left(\frac{m_{m}}{m_{p}}\right)^{2}\right)\right]\left|\sum_{i} C^{i} W_{0}^{i}(p \rightarrow m+\bar{l})\right|^{2}
$$

The form factors can be related to a matrix element

$$
P_{L}\left[W_{0}^{i}\left(q^{2}\right)-i \phi W_{q}^{i}\left(q^{2}\right)\right] u(k, s)=\langle m| \mathcal{O}^{i}|N\rangle
$$

For a generic decay channel, the partial decay width is:

$$
\Gamma(p \rightarrow m+\bar{l})=\left[\frac{m_{p}}{32 \pi^{2}}\left(1-\left(\frac{m_{m}}{m_{p}}\right)^{2}\right)\right]\left|\sum_{i} C^{i} W_{0}^{i}(p \rightarrow m+\bar{l})\right|^{2}
$$

The form factors can be related to a matrix element

$$
P_{L}\left[W_{0}^{i}\left(q^{2}\right)-i \phi W_{q}^{i}\left(q^{2}\right)\right] u(k, s)=\langle m| \mathcal{O}^{i}|N\rangle
$$

For a generic decay channel, the partial decay width is:

$$
\Gamma(p \rightarrow m+\bar{l})=\left[\frac{m_{p}}{32 \pi^{2}}\left(1-\left(\frac{m_{m}}{m_{p}}\right)^{2}\right)\right]\left|\sum_{i} C^{i} W_{0}^{i}(p \rightarrow m+\bar{l})\right|^{2}
$$

The form factors can be related to a matrix element

$$
P_{L}\left[W_{0}^{i}\left(q^{2}\right)-i \phi W_{q}^{i}\left(q^{2}\right)\right] u(k, s)=\langle m| \mathcal{O}^{i}|N\rangle
$$

For a generic decay channel, the partial decay width is:

$$
\Gamma(p \rightarrow m+\bar{l})=\left[\frac{m_{p}}{32 \pi^{2}}\left(1-\left(\frac{m_{m}}{m_{p}}\right)^{2}\right)\right]\left|\sum_{i} C^{i} W_{0}^{i}(p \rightarrow m+\bar{l})\right|^{2}
$$

The form factors can be related to a matrix element

$$
P_{L} W_{0}^{i}\left(q^{2}\right) u(k, s)=\langle m| \mathcal{O}^{i}|N\rangle
$$

For a generic decay channel, the partial decay width is:

$$
\Gamma(p \rightarrow m+\bar{l})=\left[\frac{m_{p}}{32 \pi^{2}}\left(1-\left(\frac{m_{m}}{m_{p}}\right)^{2}\right)\right]\left|\sum_{i} C^{i} W_{0}^{i}(p \rightarrow m+\bar{l})\right|^{2}
$$

The form factors can be related to a matrix element

$$
P_{L} W_{0}^{i}\left(q^{2}\right) u(k, s)=\langle m| \mathcal{O}^{i}|N\rangle
$$

The operators \mathcal{O}^{i} are given by

$$
\begin{aligned}
\mathcal{O}^{R L} & =\epsilon^{a b c} u^{a}(x, t) C P_{R} d^{b}(x, t) P_{L} u^{c}(x, t) \\
\mathcal{O}^{L L} & =\epsilon^{a b c} u^{a}(x, t) C P_{L} d^{b}(x, t) P_{L} u^{c}(x, t)
\end{aligned}
$$

Define a general operator of the form

$$
\mathcal{O}^{\left.\Gamma_{i} \Gamma_{j}=\epsilon^{a b c} u^{a}(x, t) C \Gamma_{i} d^{b}(x, t) \Gamma_{j} u^{c}(x, t)\right) .}
$$

Define a general operator of the form

$$
\mathcal{O}^{\Gamma_{i} \Gamma_{j}}=\epsilon^{a b c} u^{a}(x, t) C \Gamma_{i} d^{b}(x, t) \Gamma_{j} u^{c}(x, t)
$$

where Γ_{i} are matrices with two spin indices, labelled by,

$$
\begin{array}{cc}
S=1 & P=\gamma_{5} \\
V=\gamma_{\mu} & A_{\mu}=\gamma_{\mu} \gamma_{5} \\
T=\frac{1}{2}\left\{\gamma_{\mu}, \gamma_{\nu}\right\} & \tilde{T}=\gamma_{5} \frac{1}{2}\left\{\gamma_{\mu}, \gamma_{\nu}\right\} \\
R=P_{R}=\frac{1}{2}\left(1+\gamma_{5}\right) & L=P_{L}=\frac{1}{2}\left(1-\gamma_{5}\right)
\end{array}
$$

Define a general operator of the form
where Γ_{i} are matrices with two spin indices, labelled by,

$$
\begin{array}{cc}
S=1 & P=\gamma_{5} \\
V=\gamma_{\mu} & A_{\mu}=\gamma_{\mu} \gamma_{5} \\
T=\frac{1}{2}\left\{\gamma_{\mu}, \gamma_{\nu}\right\} & \tilde{T}=\gamma_{5} \frac{1}{2}\left\{\gamma_{\mu}, \gamma_{\nu}\right\} \\
R=P_{R}=\frac{1}{2}\left(1+\gamma_{5}\right) & L=P_{L}=\frac{1}{2}\left(1-\gamma_{5}\right)
\end{array}
$$

Operators with this structure are also used later in nucleon correlation functions and in the non-perurbative renormalization

We could measure the matrix elements $\langle m| \mathcal{O}^{i}|N\rangle$ directly

- Known as the direct method
- Three-point functions are required
- Computationally expensive

Alternatively can relate the three-point functions to two-point
functions using Chiral Perturbation Theory

- Known as the indirect method
- Computationally cheaper
- Introduces an additional source of error

We could measure the matrix elements $\langle m| \mathcal{O}^{i}|N\rangle$ directly

- Known as the direct method
- Three-point functions are required
- Computationally expensive

Alternatively can relate the three-point functions to two-point
functions using Chiral Perturbation Theory

- Known as the indirect method
- Computationally cheaper
- Introduces an additional source of error

We could measure the matrix elements $\langle m| \mathcal{O}^{i}|N\rangle$ directly

- Known as the direct method
- Three-point functions are required
- Computationally expensive

Alternatively can relate the three-point functions to two-point functions using Chiral Perturbation Theory

- Known as the indirect method
- Computationally cheaper
- Introduces an additional source of error

We could measure the matrix elements $\langle m| \mathcal{O}^{i}|N\rangle$ directly

- Known as the direct method
- Three-point functions are required
- Computationally expensive

Alternatively can relate the three-point functions to two-point functions using Chiral Perturbation Theory

- Known as the indirect method
- Computationally cheaper
- Introduces an additional source of error

For $p \rightarrow \pi^{0}+e^{+}$, the chiral perturbation theory gives

$$
\begin{aligned}
& W_{0}^{R L}\left(p \rightarrow \pi^{0}+e^{+}\right)=\alpha(1+D+F) / \sqrt{2} f+\mathcal{O}\left(m_{l}^{2} / m_{N}^{2}\right) \\
& W_{0}^{L L}\left(p \rightarrow \pi^{0}+e^{+}\right)=\beta(1+D+F) / \sqrt{2} f+\mathcal{O}\left(m_{l}^{2} / m_{N}^{2}\right)
\end{aligned}
$$

For $p \rightarrow \pi^{0}+e^{+}$, the chiral perturbation theory gives

$$
\begin{aligned}
& W_{0}^{R L}\left(p \rightarrow \pi^{0}+e^{+}\right)=\alpha(1+D+F) / \sqrt{2} f+\mathcal{O}\left(m_{l}^{2} / m_{N}^{2}\right) \\
& W_{0}^{L L}\left(p \rightarrow \pi^{0}+e^{+}\right)=\beta(1+D+F) / \sqrt{2} f+\mathcal{O}\left(m_{l}^{2} / m_{N}^{2}\right)
\end{aligned}
$$

α and β are low energy constants from the chiral lagrangian

For $p \rightarrow \pi^{0}+e^{+}$, the chiral perturbation theory gives

$$
\begin{aligned}
& W_{0}^{R L}\left(p \rightarrow \pi^{0}+e^{+}\right)=\alpha(1+D+F) / \sqrt{2} f+\mathcal{O}\left(m_{l}^{2} / m_{N}^{2}\right) \\
& W_{0}^{L L}\left(p \rightarrow \pi^{0}+e^{+}\right)=\beta(1+D+F) / \sqrt{2} f+\mathcal{O}\left(m_{l}^{2} / m_{N}^{2}\right)
\end{aligned}
$$

α and β are low energy constants from the chiral lagrangian They can be calculated from two-point functions

$$
\begin{aligned}
\langle 0| \mathcal{O}^{R L}|N\rangle & =\alpha P_{L} u(k, s) \\
\langle 0| \mathcal{O}^{L L}|N\rangle & =\beta P_{L} u(k, s)
\end{aligned}
$$

Define a class of two-point functions

$$
f_{\Gamma_{1} \Gamma_{2}, \Gamma_{3} \Gamma_{4}}(t)=\sum_{x} \operatorname{tr}\left[\left\langle\mathcal{O}^{\Gamma_{1} \Gamma_{2}} \overline{\mathcal{O}}^{\Gamma_{3} \Gamma_{4}}\right\rangle P\right]
$$

Define a class of two-point functions

$$
\begin{gathered}
f_{\Gamma_{1} \Gamma_{2}, \Gamma_{3} \Gamma_{4}(t)}=\sum_{x} \operatorname{tr}\left[\left\langle\mathcal{O}^{\Gamma_{1} \Gamma_{2}} \overline{\mathcal{O}}_{3} \Gamma_{4}\right\rangle P\right] \\
\mathcal{O}^{\Gamma_{1} \Gamma_{2}}=\epsilon^{a b c} u^{a}(x, t) C \Gamma_{i} d^{b}(x, t) \Gamma_{j} u^{c}(x, t)
\end{gathered}
$$

Define a class of two-point functions

$$
\begin{gathered}
f_{1} \Gamma_{2}, \Gamma_{3} \Gamma_{4}(t)=\sum_{x} \operatorname{tr}\left[\left\langle\mathcal{O}^{\left.\left.\Gamma_{1} \Gamma_{2} \overline{\mathcal{O}}_{3} \Gamma_{4}\right) P\right]}\right.\right. \\
\mathcal{O}_{1} \Gamma_{2}=\epsilon^{a b c} u^{a}(x, t) C \Gamma_{i} d^{b}(x, t) \Gamma_{j} u^{c}(x, t) \\
P=\frac{1}{2}\left(1+\gamma_{4}\right)
\end{gathered}
$$

Define a class of two-point functions

$$
\begin{gathered}
f_{\Gamma_{1} \Gamma_{2}, \Gamma_{3} \Gamma_{4}(t)}=\sum_{x} \operatorname{tr}\left[\left\langle\mathcal{O}^{\Gamma_{1} \Gamma_{2}} \overline{\mathcal{O}}_{3} \Gamma_{4}\right\rangle P\right] \\
\mathcal{O}^{\Gamma_{1} \Gamma_{2}}=\epsilon^{a b c} u^{a}(x, t) C \Gamma_{i} d^{b}(x, t) \Gamma_{j} u^{c}(x, t) \\
P=\frac{1}{2}\left(1+\gamma_{4}\right)
\end{gathered}
$$

Example: the proton correlation function

$$
\sum_{x}\left\langle J_{p}(x, t) \bar{J}_{p}(0)\right\rangle=f_{P S, P S}(t)
$$

Strategy:

- First find m_{N} from a correlated fit to the effective mass

$$
m_{\mathrm{eff}}(t)=\log \left(\frac{f_{P S, P S}(t)}{f_{P S, P S}(t+1)}\right) \rightarrow m_{N} \quad t \gg 0
$$

- Then find G_{N} from a correlated fit to an effective amplitude

$$
G_{N, \text { eff }}=\sqrt{2 f_{P S, P S} \mathrm{e}^{m_{N} t}} \rightarrow G_{N} \quad t \gg 0
$$

- Finally to calculate α and β we use a ratio of two-point functions

Strategy:

- First find m_{N} from a correlated fit to the effective mass

$$
m_{\mathrm{eff}}(t)=\log \left(\frac{f_{P S, P S}(t)}{f_{P S, P S}(t+1)}\right) \rightarrow m_{N} \quad t \gg 0
$$

- Then find G_{N} from a correlated fit to an effective amplitude

$$
G_{N, \mathrm{eff}}=\sqrt{2 f_{P S, P S} \mathrm{e}^{m_{N} t}} \rightarrow G_{N} \quad t \gg 0
$$

- Finally to calculate α and β we use a ratio of two-point functions

Strategy:

- First find m_{N} from a correlated fit to the effective mass

$$
m_{\mathrm{eff}}(t)=\log \left(\frac{f_{P S, P S}(t)}{f_{P S, P S}(t+1)}\right) \rightarrow m_{N} \quad t \gg 0
$$

- Then find G_{N} from a correlated fit to an effective amplitude

$$
G_{N, \text { eff }}=\sqrt{2 f_{P S, P S} \mathrm{e}^{m_{N} t}} \rightarrow G_{N} \quad t \gg 0
$$

- Finally to calculate α and β we use a ratio of two-point functions

$$
R_{\alpha}(t)=2 G_{N} \frac{f_{R L, P S}(t)}{f_{P S, P S}(t)} \rightarrow \alpha \quad R_{\beta}(t)=2 G_{N} \frac{f_{L L, P S}(t)}{f_{P S, P S}(t)} \rightarrow \beta
$$

- Calculation is carried out on 2+1 flavour Domain Wall Fermion ensembles
- Iwasaki gauge action ($\beta=2.13$)
- Fifth dimension size $L_{s}=16$
- Inverse lattice spacing $a^{-1}=1.73(3) \mathrm{GeV}$
- Two different lattice volumes
$V=16^{3} \times 32$ and $24^{3} \times 64$
- Two degenerate light quarks with masses $a m_{u / d}=0.005^{*}, 0.01,0.02$ or 0.03
- One strange quark with mass
$a m_{s}=0.04$
- Calculation is carried out on 2+1 flavour Domain Wall Fermion ensembles
- Iwasaki gauge action $(\beta=2.13)$
- Fifth dimension size $L_{s}=16$
- Inverse lattice spacing $a^{-1}=1.73(3) \mathrm{GeV}$
- Two different lattice volumes
$V=16^{3} \times 32$ and $24^{3} \times 64$
- Two degenerate light quarks with masses $a m_{u / d}=0.005^{*}, 0.01,0.02$ or 0.03
- One strange quark with mass
$a m_{s}=0.04$
- Calculation is carried out on 2+1 flavour Domain Wall Fermion ensembles
- Iwasaki gauge action ($\beta=2.13$)
- Fifth dimension size $L_{s}=16$
- Inverse lattice spacing $a^{-1}=1.73(3) \mathrm{GeV}$
- Two different lattice volumes

$$
V=16^{3} \times 32 \text { and } 24^{3} \times 64
$$

- Two degenerate light quarks with masses

$$
a m_{u / d}=0.005^{*}, 0.01,0.02 \text { or } 0.03
$$

- One strange quark with mass
$a m_{s}=0.04$
- Calculation is carried out on 2+1 flavour Domain Wall Fermion ensembles
- Iwasaki gauge action ($\beta=2.13$)
- Fifth dimension size $L_{s}=16$
- Inverse lattice spacing $a^{-1}=1.73$ (3) GeV
- Two different lattice volumes

$$
V=16^{3} \times 32 \text { and } 24^{3} \times 64
$$

- Two degenerate light quarks with masses

$$
a m_{u / d}=0.005^{*}, 0.01,0.02 \text { or } 0.03
$$

- One strange quark with mass

$$
a m_{s}=0.04
$$

Improve the signal by:

- Oversampling and binning of correlation functions
- Multiple sources per configuration
- Local Smearing (L), Gaussian Smearing (G) / (G*) and Hydrogen-Like Smearing (H) of operators

Improve the signal by:

- Oversampling and binning of correlation functions
- Multiple sources per configuration

- Local Smearing (L), Gaussian Smearing (G) / (G*) and Hydrogen-Like Smearing (H) of operators

Improve the signal by:

- Oversampling and binning of correlation functions
- Multiple sources per configuration
- Local Smearing (L), Gaussian Smearing (G) / (G*) and Hydrogen-Like Smearing (H) of operators

Fitting

Fit by minimising a correlated χ^{2}

$$
\chi^{2}(p)=\sum_{t, t^{\prime}}\left[p_{\mathrm{eff}}(t)-p\right] C_{t t^{\prime}}^{-1}\left[p_{\mathrm{eff}}\left(t^{\prime}\right)-p\right]
$$

With correlation Matrix

Bootstrap to get central value and errors

Fitting

Fit by minimising a correlated χ^{2}

$$
\chi^{2}(p)=\sum_{t, t^{\prime}}\left[p_{\mathrm{eff}}(t)-p\right] C_{t t^{\prime}}^{-1}\left[p_{\mathrm{eff}}\left(t^{\prime}\right)-p\right]
$$

With correlation Matrix

$$
C_{t t^{\prime}}=\frac{1}{N_{\text {boot }}} \sum_{n=1}^{N_{\text {boot }}}\left[p_{\text {eff }}^{(n)}(t)-\bar{p}_{\text {eff }}(t)\right]\left[p_{\text {eff }}^{(n)}\left(t^{\prime}\right)-\bar{p}_{\text {eff }}\left(t^{\prime}\right)\right] .
$$

Bootstrap to get central value and errors

Fitting

Fit by minimising a correlated χ^{2}

$$
\chi^{2}(p)=\sum_{t, t^{\prime}}\left[p_{\mathrm{eff}}(t)-p\right] C_{t t^{\prime}}^{-1}\left[p_{\mathrm{eff}}\left(t^{\prime}\right)-p\right]
$$

With correlation Matrix

$$
C_{t t^{\prime}}=\frac{1}{N_{\mathrm{boot}}} \sum_{n=1}^{N_{\mathrm{boot}}}\left[p_{\mathrm{eff}}^{(n)}(t)-\bar{p}_{\mathrm{eff}}(t)\right]\left[p_{\mathrm{eff}}^{(n)}\left(t^{\prime}\right)-\bar{p}_{\mathrm{eff}}\left(t^{\prime}\right)\right] .
$$

Bootstrap to get central value and errors

Nucleon Mass

(a)

(c)

Nucleon Amplitude

(b)

Paul Cooney

Low energy constant: α

(b)
(a)

Low energy constant: β

- Statistical error
\Rightarrow shown previously ($\approx 10 \%$)
- Finite volume errors
- Extrapolation errors
- Errors in renormalisation
- Still also have an error from using chiral perturbation theory, difficult to quantify this
- Statistical error
\Rightarrow shown previously ($\approx 10 \%$)
- Finite volume errors
- Extrapolation errors
- Errors in renormalisation
- Still also have an error from using chiral perturbation theory, difficult to quantify this
- Statistical error
\Rightarrow shown previously ($\approx 10 \%$)
- Finite volume errors
- Extrapolation errors
- Errors in renormalisation
- Still also have an error from using chiral perturbation theory, difficult to quantify this
- Statistical error
\Rightarrow shown previously ($\approx 10 \%$)
- Finite volume errors
- Extrapolation errors
- Errors in renormalisation
- Still also have an error from using chiral perturbation theory, difficult to quantify this
- Statistical error
\Rightarrow shown previously ($\approx 10 \%$)
- Finite volume errors
- Extrapolation errors
- Errors in renormalisation
- Still also have an error from using chiral perturbation theory, difficult to quantify this

Finite Volume Error

- No noticeable effect

Paul Cooney

Extrapolation Error

18\%

17\%

- Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- The renormalised operators are

- A and B label the spin structure, eg $L L$
- $Z^{A B}$ is the mixing matrix
$\Rightarrow \mathcal{O}^{L L}$ and $\mathcal{O}^{R L}$ mix with a 3 rd operator $\mathcal{O}^{A(L V)}$ $\Rightarrow Z^{A B}$ is a 3×3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing
- Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- The renormalised operators are

$$
\mathcal{O}_{\mathrm{ren}}^{A}=Z^{A B} \mathcal{O}_{\mathrm{latt}}^{B}
$$

- A and B label the spin structure, eg $L L$
$-Z^{A B}$ is the mixing matrix
$\Rightarrow O^{L L}$ and $O^{R L}$ mix with a 3rd operator $O^{A(L V)}$ $\Rightarrow Z^{A B}$ is a 3×3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing
- Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- The renormalised operators are

$$
\mathcal{O}_{\text {ren }}^{A}=Z^{A B} \mathcal{O}_{\text {latt }}^{B}
$$

- A and B label the spin structure, eg $L L$
$\Rightarrow Z^{A B}$ is the mixing matrix
- $\mathcal{O}^{L L}$ and $\mathcal{O}^{R L}$ mix with a 3 rd operator $\mathcal{O}^{A(L V)}$ $\Rightarrow Z^{A B}$ is a 3×3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing
- Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- The renormalised operators are

$$
\mathcal{O}_{\text {ren }}^{A}=Z^{A B} \mathcal{O}_{\text {latt }}^{B}
$$

- A and B label the spin structure, eg $L L$
- $Z^{A B}$ is the mixing matrix
- $\mathcal{O}^{L L}$ and $\mathcal{O}^{R L}$ mix with a 3 rd operator $\mathcal{O}^{A(L V)}$ $\Rightarrow Z^{A B}$ is a 3×3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing
- Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- The renormalised operators are

$$
\mathcal{O}_{\mathrm{ren}}^{A}=Z^{A B} \mathcal{O}_{\mathrm{latt}}^{B}
$$

- A and B label the spin structure, eg $L L$
- $Z^{A B}$ is the mixing matrix
- $\mathcal{O}^{L L}$ and $\mathcal{O}^{R L}$ mix with a 3 rd operator $\mathcal{O}^{A(L V)}$
$\Rightarrow Z^{A B}$ is a 3×3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing
- Non-perturbative MOM scheme renormalisation of the Rome-Southampton group
- The renormalised operators are

$$
\mathcal{O}_{\mathrm{ren}}^{A}=Z^{A B} \mathcal{O}_{\mathrm{latt}}^{B}
$$

- A and B label the spin structure, eg $L L$
- $Z^{A B}$ is the mixing matrix
- $\mathcal{O}^{L L}$ and $\mathcal{O}^{R L}$ mix with a 3 rd operator $\mathcal{O}^{A(L V)}$ $\Rightarrow Z^{A B}$ is a 3×3 matrix
- Exponentially accurate chiral symmetry from Domain Wall Fermions should suppress operator mixing
- We define the parity basis of operators SS-SP, PP-PS, AA+AV
- These are related to the chirality basis of operators we are interested in via

- Hence $Z_{C}=T Z_{P} T^{-1}$, where

- We define the parity basis of operators SS-SP, PP-PS, AA+AV
- These are related to the chirality basis of operators we are interested in via

$$
\begin{aligned}
L L & =\frac{1}{4}(S S+P P)-\frac{1}{4}(S P+P S) \\
R L & =\frac{1}{4}(S S-P P)-\frac{1}{4}(S P-P S) \\
A(L V) & =\frac{1}{2} A A-\frac{1}{2}(-A V)
\end{aligned}
$$

- Hence $Z_{C}=T Z_{P} T^{-1}$, where
- We define the parity basis of operators SS-SP, PP-PS, AA+AV
- These are related to the chirality basis of operators we are interested in via

$$
\begin{aligned}
L L & =\frac{1}{4}(S S+P P)-\frac{1}{4}(S P+P S) \\
R L & =\frac{1}{4}(S S-P P)-\frac{1}{4}(S P-P S) \\
A(L V) & =\frac{1}{2} A A-\frac{1}{2}(-A V)
\end{aligned}
$$

- Hence $Z_{C}=T Z_{P} T^{-1}$

- We define the parity basis of operators SS-SP, PP-PS, AA+AV
- These are related to the chirality basis of operators we are interested in via

$$
\begin{aligned}
L L & =\frac{1}{4}(S S+P P)-\frac{1}{4}(S P+P S) \\
R L & =\frac{1}{4}(S S-P P)-\frac{1}{4}(S P-P S) \\
A(L V) & =\frac{1}{2} A A-\frac{1}{2}(-A V)
\end{aligned}
$$

- Hence $Z_{C}=T Z_{P} T^{-1}$, where

$$
T=\left(\begin{array}{ccc}
1 / 4 & 1 / 4 & 0 \\
1 / 4 & -1 / 4 & 0 \\
0 & 0 & 1 / 2
\end{array}\right)
$$

We want to calculate the non-perturbative amputated 3-quark vertex function of these operators

$$
\mathcal{G}_{a b c, \alpha \beta \gamma \delta}^{A}\left(p^{2}\right)=\epsilon^{a b c}(C \Gamma)_{\alpha^{\prime} \beta^{\prime} \Gamma^{\prime}}{ }_{\delta \gamma^{\prime}}\left\langle Q_{\alpha^{\prime} \alpha}^{a^{\prime} a}(p) Q_{\beta^{\prime} \beta}^{b^{\prime} b}(p) Q_{\gamma^{\prime} \gamma}^{c^{\prime} c}(p)\right\rangle
$$

where

$$
Q_{\alpha^{\prime} \alpha}^{a^{\prime} a^{\prime}}=\left\langle S_{\alpha^{\prime} \alpha^{\prime \prime}}^{a^{\prime}, a^{\prime \prime}}(p)\right\rangle^{-1} S_{\alpha^{\prime \prime}}^{a^{\prime \prime} a}(p)
$$

and Γ and Γ^{\prime} are the matrices which appear in \mathcal{O}^{A}

We want to calculate the non-perturbative amputated 3-quark vertex function of these operators

$$
\mathcal{G}_{a b c, \alpha \beta \gamma \delta}^{A}\left(p^{2}\right)=\epsilon^{a b c}(C \Gamma)_{\alpha^{\prime} \beta^{\prime}} \Gamma^{\prime}{ }_{\delta \gamma^{\prime}}\left\langle Q_{\alpha^{\prime} \alpha}^{a^{\prime} a}(p) Q_{\beta^{\prime} \beta}^{b^{\prime} b}(p) Q_{\gamma^{\prime} \gamma}^{c^{\prime} c}(p)\right\rangle
$$

where

$$
Q_{\alpha^{\prime} \alpha}^{a^{\prime} a^{\prime}}=\left\langle S_{\alpha^{\prime} \alpha^{\prime \prime}}^{a^{\prime} a^{\prime \prime}}(p)\right\rangle^{-1} S_{\alpha^{\prime \prime}}^{a^{\prime \prime} a}(p)
$$

and Γ and Γ^{\prime} are the matrices which appear in \mathcal{O}^{A}

We want to calculate the non-perturbative amputated 3-quark vertex function of these operators

$$
\mathcal{G}_{a b c, \alpha \beta \gamma \delta}^{A}\left(p^{2}\right)=\epsilon^{a b c}(C \Gamma)_{\alpha^{\prime} \beta^{\prime}} \Gamma^{\prime}{ }_{\delta \gamma^{\prime}}\left\langle Q_{\alpha^{\prime} \alpha}^{a^{\prime} a}(p) Q_{\beta^{\prime} \beta}^{b^{\prime} b}(p) Q_{\gamma^{\prime} \gamma}^{c^{\prime} c}(p)\right\rangle
$$

where

$$
Q_{\alpha^{\prime} \alpha}^{a^{\prime}, a}=\left\langle S_{\alpha^{\prime} \alpha^{\prime \prime}}^{a^{\prime} a^{\prime \prime}}(p)\right\rangle^{-1} S_{\alpha^{\prime \prime}}^{a^{\prime \prime}, a}(p)
$$

and Γ and Γ^{\prime} are the matrices which appear in \mathcal{O}^{A}

We want to calculate the non-perturbative amputated 3-quark vertex function of these operators

$$
\mathcal{G}_{a b c, \alpha \beta \gamma \delta}^{A}\left(p^{2}\right)=\epsilon^{a b c}(C \Gamma)_{\alpha^{\prime} \beta^{\prime} \Gamma^{\prime}}{ }_{\delta \gamma^{\prime}}\left\langle Q_{\alpha^{\prime} \alpha}^{a^{\prime} a}(p) Q_{\beta^{\prime} \beta}^{b^{\prime} b}(p) Q_{\gamma^{\prime} \gamma}^{c^{\prime} c}(p)\right\rangle
$$

where

$$
Q_{\alpha^{\prime} \alpha}^{a^{\prime}, a}=\left\langle S_{\alpha^{\prime} \alpha^{\prime \prime}}^{a^{\prime} a^{\prime \prime}}(p)\right\rangle^{-1} S_{\alpha^{\prime \prime}}^{a^{\prime \prime}, a}(p)
$$

and Γ and Γ^{\prime} are the matrices which appear in \mathcal{O}^{A}

- The renormalization condition in the RI-Mom Scheme is

$$
Z_{q}^{-3 / 2} Z^{B C} M^{C A}=\delta^{B A}
$$

- Where the matrix M is,

- and the projection matrices $P_{a b c, \beta \alpha \delta \gamma}^{A}$ are chosen so that the renormalization condition is satisfied in the free field case where $Z_{q}=1$ and $Z^{B C}=\delta^{B C}$.
$\checkmark Z^{A B}$ can then be calculated from $M^{A B}$ using the renormalization condition
- The renormalization condition in the RI-Mom Scheme is

$$
Z_{q}^{-3 / 2} z^{B C} M^{C A}=\delta^{B A}
$$

- Where the matrix M is,

$$
M^{A B}=\mathcal{G}_{a b c, \alpha \beta \gamma \delta}^{A}\left(p^{2}\right) P_{a b c, \beta \alpha \delta \gamma}^{B}
$$

- and the projection matrices $P_{a b c, \beta \alpha \delta \gamma}^{A}$ are chosen so that the renormalization condition is satisfied in the free field case where $Z_{q}=1$ and $Z^{B C}=\delta^{B C}$
- $Z^{A B}$ can then be calculated from $M^{A B}$ using the
renormalization condition
- The renormalization condition in the RI-Mom Scheme is

$$
Z_{q}^{-3 / 2} z^{B C} M^{C A}=\delta^{B A}
$$

- Where the matrix M is,

$$
M^{A B}=\mathcal{G}_{a b c, \alpha \beta \gamma \delta}^{A}\left(p^{2}\right) P_{a b c, \beta \alpha \delta \gamma}^{B}
$$

- and the projection matrices $P_{a b c, \beta \alpha \delta \gamma}^{A}$ are chosen so that the renormalization condition is satisfied in the free field case where $Z_{q}=1$ and $Z^{B C}=\delta^{B C}$.
- $Z^{A B}$ can then be calculated from $M^{A B}$ using the renormalization condition
- The renormalization condition in the RI-Mom Scheme is

$$
Z_{q}^{-3 / 2} z^{B C} M^{C A}=\delta^{B A}
$$

- Where the matrix M is,

$$
M^{A B}=\mathcal{G}_{a b c, \alpha \beta \gamma \delta}^{A}\left(p^{2}\right) P_{a b c, \beta \alpha \delta \gamma}^{B}
$$

- and the projection matrices $P_{a b c, \beta \alpha \delta \gamma}^{A}$ are chosen so that the renormalization condition is satisfied in the free field case where $Z_{q}=1$ and $Z^{B C}=\delta^{B C}$.
- $Z^{A B}$ can then be calculated from $M^{A B}$ using the renormalization condition

- Rotate the basis
- Perform a chiral extrapolation
- We match to the $\overline{\mathrm{MS}}$ scheme at 2 GeV
- This gives
$U^{\overline{\mathrm{MS}} \leftarrow \text { latt }}(2 \mathrm{GeV})_{L L}=0.662(10)$
$U^{\overline{\mathrm{MS}} \text {-latt }}(2 \mathrm{GeV})_{R L}=0.664(8)$
- Rotate the basis
- Perform a chiral extrapolation
- We match to the $\overline{\mathrm{MS}}$ scheme at 2 GeV
- This gives

$$
\begin{aligned}
& U^{\overline{\mathrm{MS}} \longleftarrow \operatorname{latt}}(2 \mathrm{GeV})_{L L}=0.662(10) \\
& U^{\overline{\mathrm{MS}} \longleftarrow \operatorname{latt}}(2 \mathrm{GeV})_{R L}=0.664(8)
\end{aligned}
$$

> Putting all these pieces together we get $$
\alpha=-0.0112(12)(22)
$$ $-\beta=0.0120(13)(23)$

- The direct calculation is currently underway
- Example: Preliminary results for the $W_{0}^{L L}\left(p \rightarrow \pi^{+}+\nu\right)$, on the $16^{3} \times 32$ lattice, with valence quark mass $a m_{u}=0.03$
- The direct calculation is currently underway
- Example: Preliminary results for the $W_{0}^{L L}\left(p \rightarrow \pi^{+}+\nu\right)$, on the $16^{3} \times 32$ lattice, with valence quark mass $a m_{u}=0.03$

