B and D Meson Decay Constants

Paul Mackenzie, Claude Bernard, and Jim Simone mackenzie@fnal.gov

For the Fermilab Lattice and MILC Collaborations

Lattice 2008 Williamsburg July 14-19, 2008

2005:

 The D and D_s decay constants were predicted by Fermilab/MILC to 10% before the experiments were done to that accuracy.

Fermilab/MILC, Phys. Rev. Lett. 95: 122002, 2005.

Т

$$f_{D^+} = \begin{cases} 201 \pm 03 \pm 17 \text{ MeV [lattice]} \\ 223 \pm 17 \pm 03 \text{ MeV [CLEO]} \end{cases}$$

$$f_{D_s} = \begin{cases} 249 \pm 03 \pm 16 \text{ MeV [lattice]} \\ 279 \pm 17 \pm 20 \text{ MeV [BaBar]} \end{cases}$$

 $\frac{\sqrt{m_{D^+}} f_{D^+}}{\sqrt{m_{D_s}} f_{D_s}} = \begin{cases} 0.786 \pm 0.042 \text{ MeV [lattice]} \\ 0.779 \pm 0.093 \text{ MeV [expt]} \end{cases}$

Caveat: We claimed a success, but as calculations become increasingly accurate, at some point we do not expect perfect agreement between the Standard Model and experiment.

Where will that point be?

Paul Mackenzie

2008:

- Uncertainties in f_{Ds} from experiment and in the Fermilab/MILC calculation have been reduced, theory has stayed low and experiment has stayed high.
- New calculation from HPQCD:

 $f_{K} = 157(2) \text{ MeV} f_{D} = 207(4) \text{ MeV}$

$$f_{K}/f_{\pi} = 1.189(7)$$
 $f_{Ds} = 241(3) \text{ MeV}$
 $f_{Ds} = correct to 2\%$

(f_{π} , f_{K} , and f_{D} correct to 2%.)

• 3.5 σ in *f*_{Ds.}

HPQCD, 2008

Fermilab/MILC D, D_s, B, and B_s decay constants

- Improved staggered (asqtad) light quarks,
- Clover/Fermilab O(a) improved heavy quarks.
- MILC 2+1 flavor Symanzik improved gauge configurations (Phys. Rev. D70:114501, 2004).

Ensembles:

$a [\mathrm{fm}]$	am_h	am_l	β	r_1/a	configs	$\# m_q$
0.09	0.031	0.0031	7.08	3.69	435	11
		0.0062	7.09	3.70	557	10
		0.0124	7.11	3.72	518	8
0.12	0.05	0.005	6.76	2.64	529	12
		0.007	6.76	2.63	833	12
		0.01	6.76	2.62	592	12
		0.02	6.79	2.65	460	12
		0.03	6.81	2.66	549	12
0.15	0.0484	0.0097	6.572	2.13	631	9
		0.0194	6.586	2.13	631	9
		0.029	6.600	2.13	440	9
0.15	0.0484	$0.0097 \\ 0.0194 \\ 0.029$	$6.572 \\ 6.586 \\ 6.600$	2.13 2.13 2.13	631 631 440	9 9 9

We are finishing a reanalysis of our existing data and preparing for new runs this year with four times the statistics.

Fermilab/MILC D, D_s, B, and B_s decay constants

- Improved staggered (asqtad) light quarks,
- Clover/Fermilab O(a) improved heavy quarks.
- MILC 2+1 flavor Symanzik improved gauge configurations (Phys. Rev. D70:114501, 2004).

Ensembles:

$a [\mathrm{fm}]$	am_h	am_l	β	r_1/a	configs	$\# m_q$
0.09	0.031	0.0031	7.08	3.69	435	11
		0.0062	7.09	3.70	557	10
		0.0124	7.11	3.72	518	8
0.12	0.05	0.005	6.76	2.64	529	12
		0.007	6.76	2.63	833	12
		0.01	6.76	2.62	592	12
		0.02	6.79	2.65	460	12
		0.03	6.81	2.66	549	12
0.15	0.0484	0.0097	6.572	2.13	631	9
		0.0194	6.586	2.13	631	9
		0.029	6.600	2.13	440	9

We are finishing a reanalysis of our existing data and preparing for new runs this year with four times the statistics.

Partially quencheds taggered chiral perturbation theory used to extrapolate to the chiral and continuum limits.

1.4

The decay constants are defined by

$$\langle 0 \mid A_{\mu} \mid H_q(p) \rangle = i f_{H_q} p_{\mu}$$

The combination

$$\phi_{H_q} = f_{H_q} \sqrt{m_{H_q}}$$

is obtained from a combined fit to

$$C_O(t) = \left\langle O_{H_q}^{\dagger}(t) \ O_{H_q}(0) \right\rangle$$
$$C_{A_4}(t) = \left\langle A_4(t) \ O_{H_q}(0) \right\rangle,$$

The current renormalizations are obtained from

$$Z_{A4}^{Qq} =
ho_{A4}^{Qq} \sqrt{Z_{V_4}^{QQ} Z_{V_4}^{qq}}$$

The decay constants are defined by

$$\langle 0 \mid A_{\mu} \mid H_q(p) \rangle = i f_{H_q} p_{\mu}$$

The combination

$$\phi_{H_q} = f_{H_q} \sqrt{m_{H_q}}$$

is obtained from a combined fit to

$$C_O(t) = \left\langle O_{H_q}^{\dagger}(t) \ O_{H_q}(0) \right\rangle$$
$$C_{A_4}(t) = \left\langle A_4(t) \ O_{H_q}(0) \right\rangle,$$

The current renormalizations are obtained from

Φ_D and Φ_{Ds} chiral extrapolation

Slope is larger in the continuum limit. Taste breaking effects suppress the logs at finite *a*.

Φ_B and Φ_{Bs} chiral extrapolation

Φ_D/Φ_{Ds} chiral extrapolation

Paul Mackenzie

B and D Meson Decay Constants, Lattice 2008, July 28-Aug. 1, 2008. 9/16

Error budgets

Improved this year.

	$arPhi_{ extsf{Ds}}$	$oldsymbol{\Phi}_{Dd}$	R^{D}	$arPhi_{Bs}$	$oldsymbol{\Phi}_{Bd}$	R ^B	
Statistics	3.1 <mark>1.0</mark>	3.8 1.5	1.0 1.0	2.1 <mark>2.5</mark>	3.1 <mark>3.4</mark>	1.8 2.2	2 2 2
Inputs <i>r</i> ₁ , <i>m</i> _s , <i>m</i> _l	1.4	2.1	0.6	1.8	2.5	0.6	
Input <i>m</i> _c or <i>m</i> _b	2.7	2.7	0.1	1.1	1.1	0.1	
Z	1.4	1.4	<0.1	1.4	1.4	<0.1	
Higher order ρ_{A4}	0.1	0.1	<0.1	0.4	0.4	<0.1	
Heavy q discretization	2.7	2.7	0.3	1.9	1.9	0.2	
Light q disc. & χ extr.	1.2	2.6	1.6	2.0	2.4	2.4	
V	0.2	0.6	0.6	0.2	0.6	0.6	
Total systematic	4.5	5.3	1.8	3.8	4.4	2.6	

2007 2008

Error budgets

Improved this year.

	Φ_{Ds}	$oldsymbol{\Phi}_{Dd}$	R^{D}	$arPhi_{Bs}$	$arPhi_{Bd}$	R ^B	
Statistics	3.1 1.0	3.8 <mark>1.5</mark>	1.0 1.0	2.1 <mark>2.5</mark>	3.1 <mark>3.4</mark>	1.8 2.2	2 2
Inputs <i>r</i> ₁ , <i>m</i> _s , <i>m</i> _l	1.4	2.1	0.6	1.8	2.5	0.6	
Input <i>m</i> c or <i>m</i> b	2.7	2.7	0.1	1.1	1.1	0.1	
Z	1.4	1.4	<0.1	1.4	1.4	<0.1	
Higher order ρ_{A4}	0.1	0.1	<0.1	0.4	0.4	<0.1	
Heavy q discretization	2.7	2.7	0.3	1.9	1.9	0.2	
Light q disc. & χ extr.	1.2	2.6	1.6	2.0	2.4	2.4	
V	0.2	0.6	0.6	0.2	0.6	0.6	
Total systematic	4.5	5.3	1.8	3.8	4.4	2.6	

2007 2008

Results

$$f_D = 207 (11) \text{ MeV}$$

 $f_{Ds} = 249 (11) \text{ MeV}$
 $f_B = 195 (11) \text{ MeV}$
 $f_{Bs} = 243 (11) \text{ MeV}$

$$f_D/f_{Ds} = .833 (8)(17),$$

 $f_B/f_{Bs} = .803 (18)(21).$

Comparison of *f*_{Ds} with experiment

- For *f_D*, good agreement between experiment, HPQCD and Fermilab/ MILC.
- For f_{Ds} ,
 - Agreement between HPQCD and Fermilab/MILC,
 - 1.6 σ disagreement between Fermilab/MILC and experiment,
 - 3.5 σ disagreement between HPQCD and experiment.

Comparison of f_D/f_{Ds} with experiment

- For now, looking at f_D/f_{Ds} doesn't clean up the picture.
 - A slight disagreement between HPQCD and FNAL/MILC develops.
 - Experimental uncertainties are independent, and add in quadrature.

Theory vs. experiment for *f*_{Ds}

- 3.5 σ discrepancy is dominated by experimental statistical error(!).
 - Double HPQCD theory error bar, discrepancy \rightarrow 3.3 σ .
 - Triple HPQCD error (and include Fermilab/MILC 2005 value) \rightarrow 3.1 σ .
 - f_{Ds} should be easier than f_D , but f_{D_c} f_{K_c} and f_{π} come out fine to 2%.
- What if the discrepancy is real (Kronfeld talk Friday)?
 - Kronfeld and Dobrescu, effect could be caused by:
 - Charged Higgs (in a new 2HDM)
 - Leptoquarks (of two ilks)

Paul Mackenzie

The view from CLEO (Sheldon Stone):

Conclusions

 We are in close agreement with the Follana et al calculation for f_D+. This gives credence to their methods

The disagreement with f_{Ds} is enhanced

Outlook

- Reanalysis of our existing data is being completed.
 - Bringing down several of biggest uncertainties.
- New runs are starting to quadruple the current statistics.
 - Should help with most of the uncertainties.
- f_{Ds} theory vs. experiment remains a puzzle.
 - A good target for other fermion methods.

