High-Precision Masses and Couplings Update from HPQCD Collaboration

G. Peter Lepage Cornell University

Why Fundamental Parameters?

- QCD Phenomenology
- Input to beyond the Standard Model models
- High-precision tests of lattice QCD

High-Precision Lattice QCD

- Improved gluon action + improved staggered quarks (MILC)
 - a ranging between 0.06 and 0.18 fm.
 - u,d,s vacuum polarization $(n_f=3)$ with ASQTAD quarks
 - realistic m_s
 - $m_u = m_d = m_s/10$ to $m_s/2.5$ (small enough for chiral extrapolation)
- Highly-improved staggered quarks (HISQ) for valence u,d,s,c
 - 3x smaller scaling violations for *u,d,s*
 - Relativistic formalism for c quarks: conserved currents, etc
 - Unified treatment of c with u,d,s

High-Precision Charm-Quark Mass from Current-Current Correlators in Lattice and Continuum QCD

I. Allison, ¹ E. Dalgic, ² C. T. H. Davies, ³ E. Follana, ⁴ R. R. Horgan, ⁵ K. Hornbostel, G. P. Lepage, 7, * J. Shigemitsu, H. Trottier, and R. M. Woloshyn 1 (HPQCD Collaboration)

K. G. Chetvrkin, ⁸ J. H. Kühn, ⁸ M. Steinhauser, ⁸ and C. Sturm ⁹ ¹TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada ²Physics Department, Simon Fraser University, Vancouver, British Columbia, Canada ³Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK ⁴Physics Department, The Ohio State University, Columbus, Ohio 43210, USA ⁵ Department of Applied Mathematics and Theoretical Physics, Cambridge University, Wilberforce Road, Cambridge CB3 0WA, UK ⁶Southern Methodist University, Dallas, Texas 75275, USA ⁷Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853, USA ⁸Institut für Theoretische Teilchenphysik, Universität Karlsruhe, D-76128 Karlsruhe, Germany ⁹Physics Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A. (Dated: April 24, 2008)

arXiv:0805.2999

Updated:0.06 fm latticesnew 4-loop c_ns

Pseudoscalar Correlator

Compute

$$G(t) \equiv a^6 \sum_{\mathbf{x}} (am_{0c})^2 \langle 0|j_5(\mathbf{x}, t)j_5(0, 0)|0\rangle$$

 $\overline{\psi}_c \gamma_5 \psi_c$

- Mass factors imply UV finite (PCAC because HISQ)
- Implies:

$$G_{\text{cont}}(t) = G_{\text{lat}}(t) + \mathcal{O}(a^2)$$
 for all t

Moments

Low *n* moments perturbative $(E_{\text{threshold}} = 2m_c)$:

$$G_n = \sum_{t} (t/a)^n G(t)$$

$$\to \frac{\partial^n}{\partial E^n} \Pi(E=0)$$

Implies:

Refinements — Reduced Moments

$$R_n \equiv \begin{cases} G_4/G_4^{(0)} & \text{for } n=4 \\ \frac{am_{\eta_c}}{2am_{0c}} \left(G_n/G_n^{(0)}\right)^{1/(n-4)} & \text{for } n\geq 6 \end{cases}$$
 n/quark mass ratio

meson/quark mass ratio reduces mass tuning error

tree-level LQCD removes explicit a and cancels tree-level $O(a^n)$ errors

$$\Rightarrow R_n \equiv \begin{cases} r_4(\alpha_{\overline{\text{MS}}}, \mu/m_c) & \text{for } n = 4 \\ \frac{r_n(\alpha_{\overline{\text{MS}}}, \mu/m_c)}{2m_c(\mu)/m_{\eta_c}} & \text{for } n \ge 6 \end{cases}$$

Refinements — a^2 , m_q Extrapolation

$$R_n(a) = R_n(0) \left(1 + c_1 \alpha_s (am_c)^2 + c_2 \alpha_s (am_c)^4 + c_3 \alpha_s (am)^6 + \cdots \right) \left(1 + d_1 (2m_{u/d} + m_s) / m_c \right)$$

Results (Preliminary)

$m_c(3\mathrm{GeV}) =$	$0.988(10)\mathrm{GeV}$
$m_c(m_c) =$	$1.269\left(9\right)\mathrm{GeV}$

	R_6	R_8	R_{10}
a^2 extrapolation	0.2%	0.3%	0.2%
pert'n theory	0.4	0.3	1.3
$\alpha_{\overline{\mathrm{MS}}}$ uncertainty	0.3	0.4	1.0
gluon condensate	0.3	0.0	0.3
statistical errors	0.0	0.0	0.0
relative scale errors	0.4	0.4	0.4
overall scale errors	0.6	0.6	0.7
sea quarks	0.3	0.3	0.3
finite volume	0.1	0.1	0.3
Total	1.0%	1.0%	1.9%

Compare with continuum determination from vector current + $R(e^+e^-)$:

 $m_c(3GeV)=0.986(13) GeV$

Kuhn et al, Nucl. Phys. B778, 192 (2007) [hep-ph/0702103]

Variations — Vector, Axial-Vector Correlators

$$j_{\mu}^{(1)} \equiv \overline{\psi}_c(x+a\hat{\mu})\gamma_{\mu}\psi_c(x) \qquad \qquad \text{Three different tastes} \\ j_{\mu}^{(\mu)} \equiv \overline{\psi}_c(x)\gamma_{\mu}\psi_c(x) \qquad \qquad \text{Not conserved} \\ j_{5\mu}^{(5\mu)} \equiv \overline{\psi}_c(x)\gamma_5\gamma_{\mu}\psi_c(x) \qquad \qquad \text{Hence } j_{\text{cont}} = Z_j j_{\text{lat}} + Q_j j_{\text{$$

- Hence $j_{cont} = Z_j j_{lat} + O(a^2)$

Redefine reduced moments to remove Z_i :

$$R_n^{(j)} \equiv \frac{am^{(j)}}{2am_{0c}} \left(\frac{G_n^{(j)}}{G_{n-2}^{(j)}} \frac{G_{n-2}^{(j0)}}{G_n^{(j0)}} \right)^{1/2}$$

$$\equiv \frac{r_n^{(j_{\text{cont}})} (\alpha_{\overline{\text{MS}}}, \mu/m_c)}{2m_c(\mu)/m^{(j)}}$$

Compare quenched study: Bochkarev & de Forcrand, Nucl Phys B477, 489 (1996)

Results (Preliminary)

"Nonperturbative" Z_j

Use ratios of G_n s to determine current renormalizations Z_i

• Eg, for pseudoscalar:

$$Z_{ps}(a) = 1.057(8) \quad 1.045(7) \quad 1.031(7) \quad 1.019(7) \longrightarrow 1.007(10)$$

Eg, for vectors, get correct leptonic width for psi to within
 2-3% (Christine Davies talk).

Coupling from Ps. Correlator (Preliminary)

- R_4 , R_6/R_8 ... dimensionless
- Compare lattice with pert'n theory to get coupling (at 3 GeV)

Compare PDG 2006 which gives 0.1176(20)

$$\alpha_{\overline{\text{MSB}}(M_Z, n_f = 5)} = 0.1173 (10)$$

	$lpha_{\overline{ m MS}}(M_Z)$
a^2 extrapolation	0.4%
pert'n theory	0.7
$\alpha_{\overline{\mathrm{MS}}}$ uncertainty	0.0
gluon condensate	0.0
statistical errors	0.1
relative scale errors	0.0
overall scale errors	0.1
sea quarks	0.3
finite volume	0.0
Total	0.9%

m_b from NRQCD Correlator (HPQCD Prelim.)

Update: Accurate Determinations of α_s from Realistic Lattice QCD

C. T. H. Davies,¹ I. D. Kendall,¹ G. P. Lepage,^{2,*} C. McNeile,¹ J. Shigemitsu,³ and H. Trottier⁴ (HPQCD Collaboration)

¹Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
²Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853, USA
³Physics Department, The Ohio State University, Columbus, Ohio 43210, USA
⁴Physics Department, Simon Fraser University, Vancouver, British Columbia, Canada
(Dated: July 8, 2008)

arXiv:0807.1687

Wilson Loops

- UV singular ⇒ perturbative
- a^n errors highly suppressed (IR nonperturbative)
- a-dependent coupling scale

$$\log(W) = \sum_{n=1}^{\infty} c_n \alpha_V(d/a)$$
 nonperturbative corrections $\times \left(1 + w_m a (2m_{u/d} + m_s) + \cdots \right)$

- c_1 , c_2 , c_3 from numerical evaluation of Feyman diagrams
- $c_4 \dots c_{10} \dots$ from fit to a dependence

What's new?

- II configurations, covering wide range of sea-quark masses and 5 lattice spacings, including 40% smaller lattice spacing.
- Better use of MILC's r_1/a (smaller errors for ratio of scales), including a^n and chiral corrections to r_1 .
- Fit nonperturbative chiral corrections to log(W).
- New result is one sigma above old result.

Results

Summary (Preliminary)

• *c*-quark HISQ correlators imply $(n_f=5)$:

$$m_c(m_c) = 1.269 \, (9) \, \mathrm{GeV} \qquad \qquad \text{HISQ cc correlators agree} \\ \alpha_{\overline{\mathrm{MSB}}}(M_Z) = 0.1173 \, (10) \qquad \qquad \text{with continuum to$$

• b-quark NRQCD correlator implies $(n_f=5)$:

$$m_b(m_b) = 4.20 (4) \,\mathrm{GeV}$$

• New analysis of coupling $(n_f=5)$:

$$\alpha_{\overline{\text{MSB}}}(M_Z) = 0.1183(7)$$