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Why Fundamental Parameters?

• QCD Phenomenology

• Input to beyond the Standard Model models

• High-precision tests of lattice QCD



• Improved gluon action + improved staggered quarks (MILC)

• a ranging between 0.06 and 0.18 fm. 

• u,d,s vacuum polarization (nf =3) with ASQTAD quarks

• realistic ms

• mu = md = ms/10 to ms/2.5 (small enough for chiral extrapolation)

• Highly-improved staggered quarks (HISQ) for valence u,d,s,c

• 3x smaller scaling violations for u,d,s

• Relativistic formalism for c quarks: conserved currents, etc

• Unified treatment of c with u,d,s

High-Precision Lattice QCD
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• 0.06 fm lattices
• new 4-loop cns
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We use lattice QCD simulations, with MILC configurations and HISQ c-quark propagators, to
make very precise determinations of moments of charm-quark pseudoscalar, vector and axial-vector
correlators. These moments are combined with new four-loop results from continuum perturba-
tion theory to obtain several new determinations of the MS mass of the charm quark. We find
mc(3GeV) = 0.984 (16) GeV, or, equivalently, mc(mc) = 1.266 (14) GeV. This agrees well with
results from continuum analyses of the vector correlator using experimental data for e+e− annihi-
lation (instead of using lattice QCD simulations). These lattice and continuum results are the most
accurate determinations to date of this mass. We also obtain a new result for the QCD coupling:

α
(nf =4)

MS
(3GeV) = 0.230 (18), or, equivalently, α

(nf =5)

MS
(MZ) = 0.113 (4).

PACS numbers: 11.15.Ha,12.38.Aw,12.38.Gc

I. INTRODUCTION

Precise values for the charm quark’s mass mc are im-
portant for high-precision tests of the Standard Model.
Some of the most accurate determinations currently come
from zero-momentum moments of current-current corre-
lators built from the c quark’s electromagnetic current
(see, for example, [1, 2]). Low moments are perturbative
and have long been known through three-loop order [3–5].
New techniques have recently extended these results to
much higher moments [6, 7] and, in some cases, to four-
loop order [8, 9]. These moments can be estimated non-
perturbatively, using dispersion relations, from experi-
mental data for the electron-positron annihilation cross
section, σ(e+e− → γ∗ → X). The c quark’s mass is ex-
tracted by comparing the perturbative and experimental
determinations.

In this paper we show how to compute such moments
directly using accurately tuned, highly realistic numerical
simulations of QCD in the lattice approximation [10]. As
we will show, the correlator moments obtained nonper-
turbatively from such simulations can be used in place of
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data from e+e− annihilation to obtain new, few-percent
accurate determinations of the c quark’s mass. With lat-
tice QCD, it is also possible to replace the electromag-
netic current in the correlator by the pseudoscalar op-
erator mcψγ5ψ, thereby providing a completely new set
of mass determinations and an important cross check on
the entire methodology. In fact our most accurate results
come from the pseudoscalar correlators.

In Section II we describe how to compute pseudoscalar
correlators and their moments using lattice QCD. We
discuss techniques for reducing lattice artifacts in Sec-
tion III, and present new determinations of mc(µ) from
our lattice “data” in Section IV. Here we also present a
new determination of the QCD coupling. In Section V
we extend our analysis to include vector and axial-vector
correlators. We summarize our main results in Sec-
tion VI. In the Appendix we review the continuum per-
turbation theory needed for this analysis, including new
four-loop results for the pseudoscalar case.

II. LATTICE QCD AND PSEUDOSCALAR
CORRELATORS

Few-percent accurate QCD simulations have only be-
come possible in the last few years (see, for exam-
ple, [11, 12]), and accurate simulations of relativistic



Compute

• Mass factors imply UV finite (PCAC because HISQ)

• Implies: 

Pseudoscalar Correlator

Gcont(t) = Glat(t) +O(a2) for all t

ψcγ5ψc

2

TABLE I: Parameters for the QCD simulations used in this
paper. The inverse lattice spacing a−1 is in units of GeV; L
and T are the spatial and temporal size of the lattices used.
The u and d masses are set equal to mu/d. The configurations
used here were generated by the MILC collaboration [15].
Ncfg is the number of configurations used in each case; we
used multiple time origins and, in some cases, random wall
sources to render statistical errors negligible.

a−1 am0u/d am0s am0c L/a T/a
1.31GeV 0.010 0.048 0.850 16 48
1.31 0.019 0.048 0.850 16 48
1.62 0.005 0.050 0.650 24 64
1.60 0.010 0.050 0.660 20 64
1.63 0.020 0.050 0.648 20 64
2.26 0.006 0.031 0.430 28 96
2.28 0.012 0.031 0.427 28 96
3.24 0.004 0.018 0.280 48 144

c quarks only in the past year — with the new Highly
Improved Staggered Quark (HISQ) discretization of the
quark action [13, 14], which we use here. A lattice QCD
simulation proceeds in two steps. First the QCD pa-
rameters — the bare coupling constant and bare quark
masses in the Lagrangian — must be tuned. Then the
tuned simulation is used to compute vacuum matrix ele-
ments of various quantum operators from which physics
is extracted. An obvious approach to the tuning is to
choose a lattice spacing a, and then tune each of the
QCD parameters so that the simulation reproduces the
experimental value for a corresponding physical quantity
that is well measured. It is more efficient, however, to
first choose a value for the bare coupling and then ad-
just the lattice spacing and bare masses to give physical
results.

In the simulations used here, we set the lattice spacing
to reproduce the correct Υ′−Υ meson mass difference in
the simulations, while we tuned the u/d, s, c and b masses
to give correct values for m2

π, 2m2
K −m2

π, mηc , and mΥ,
respectively. (For efficiency we set mu = md; this leads
to negligible errors in the analysis presented here.) The
important parameters for the particular simulations used
in this paper are listed in Table I; further details can be
found in [11, 14]. Once these parameters are set, there
are no further physics parameters, and the simulation will
accurately reproduce QCD physics for momenta much
smaller than the ultraviolet (UV) cutoff (Λ ∼ π/a). We
have tested these simulations extensively (see, for exam-
ple, [11, 12]) and, in particular, we have done very precise
tests for the charm-quark physics most relevant to this
work. These demonstrate, for example, that our simu-
lations reproduce the low-lying spectrum, including spin
structure, of both charmonium and heavy-light mesons
(D and Ds) to within our simulation uncertainties (a few
percent or less) [13, 14].

Given a tuned simulation, it is straightforward to cal-

culate correlators of the sort used to determine mc. The
simplest of these is for the c quark’s pseudoscalar density,
j5 ≡ ψcγ5ψc:

G(t) ≡ a6
∑

x

(am0c)2〈0|j5(x, t)j5(0, 0)|0〉 (1)

where m0c is the c quark’s bare mass (in the lattice La-
grangian). Here time t is euclidean, and the sum over
spatial position x sets the total three momentum to zero.
Note that G(t) = G(T − t) = G(T + t) where T is the
temporal length of the lattice.

We include two factors of am0c in the definition of
G(t) so that G(t) becomes independent of the UV cutoff
as a → 0. Consequently the lattice and continuum G(t)s
become equal in this limit. Moments Gn are trivially
computed:

Gn ≡
∑

t

(t/a)nG(t), (2)

where, on our periodic lattice [16],

t/a ∈ {0, 1, 2 . . . T/2a−1, 0,−T/2a+1 . . .−2,−1}. (3)

The cutoff independence of G(t) implies that

Gn =
gn(αMS(µ), µ/mc)

(amc(µ))n−4
(4)

for n ≥ 4, where mc(µ) is the MS mass at scale µ and
gn is dimensionless. The c mass can be determined from
moments with n ≥ 6 given Gn from lattice simulations
and gn from perturbation theory (see Appendix). This
assumes that perturbation theory is applicable, which
should be the case for small enough n.

Note that here and elsewhere in this paper we omit
annihilation contributions from cc̄ → gluons → cc̄. This
is allowed provided the same contributions are omitted
from perturbation theory, which we do. Annihilation
contributions to the nonperturbative part of our anal-
ysis would be negligible in any case (for example, they
shift the ηc mass by approximately 2.4MeV, which is less
than 0.1% [13]).

III. REDUCED MOMENTS

The two biggest challenges for lattice QCD in produc-
ing these moments lie in controlling: 1) O((amc)n) er-
rors caused by the lattice approximation; and 2) tuning
errors in the QCD parameters, and especially in the lat-
tice spacing and the c quark’s bare mass. Each of these
potential sources of error is reduced by replacing Gn by
a reduced moment:

Rn ≡






G4/G(0)
4 for n = 4,

amηc

2am0c

(
Gn/G(0)

n

)1/(n−4)
for n ≥ 6,

(5)
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FIG. 1: Reduced moments Rn from lattice simulations with
different lattice spacings a. The dashed lines show the func-
tions used to fit the lattice results. These extrapolation func-
tions were used to obtain the a = 0 results shown in the plot.

where G(0)
n is the nth moment of the correlator to lowest

order in lattice QCD perturbation theory, amηc is the
ηc meson mass (in lattice units) from the simulation, and
am0c is the bare lattice c mass (in lattice units) used
in the simulation. The reduced moments can again be
written in terms of continuum quantities:

Rn ≡






r4(αMS, µ/mc) for n = 4,
rn(αMS, µ/mc)
2mc(µ)/mηc

for n ≥ 6,
(6)

where rn is obtained from gn (Eq. (4)) and its value, g(0)
n ,

in lowest-order continuum perturbation theory:

rn =





g4/g(0)

4 for n = 4,
(
gn/g(0)

n

)1/(n−4)
for n ≥ 6.

(7)

The c mass is obtained from Eq. (6) with n ≥ 6 using
the nonperturbative lattice QCD (LQCD) value for Rn,
the perturbative QCD (PQCD) estimate for rn, and the
experimental value for mηc , 2.980 GeV:

mc(µ) =
mexp

ηc

2
rPQCD
n

RLQCD
n

. (8)

The G(0)
n factor in Rn removes the lattice spacing a

from the reduced moment, and cancels all tree-level
O(an) errors, thereby reducing finite-a errors overall by
about a factor of three [17]. The amηc factor reduces
Rn’s sensitivity to slight mistunings of the c quark’s bare
mass, again by a factor of three. The sensitivity to m0c is
reduced because mc now enters in the ratio mc/mηc , so
small errors in the simulation parameter m0c are mostly
cancelled by corresponding shifts in the simulation value
for mηc [18].

Our simulation results for Rn(a) are listed for different
moments n and lattice spacings a in Table II. The un-
certainties quoted for each of these values come from two

sources. First, for sake of efficiency, we used u/d sea-
quark masses that were about 4–5 times too large in
our simulations (mu/d/ms ≈ 0.2). Simulations with sea
masses that were half and twice this value shift our re-
sults by less than our 0.2% simulation errors [19]. This
error in the moments can also be analyzed using per-
turbation theory. It implies a fractional error of order
α2

s(µ)(mu/d/mc)2, which is much smaller than 0.1% —
much too small to justify the effort of extrapolating in
the sea masses.

A related concern is the contribution from c-quark vac-
uum polarization, which we omit from the simulation.
The importance of c-quark loops in radiative corrections
to the moments can be estimated using perturbation the-
ory. We find that the c-loops add 0.7% to R4 but less
than 0.1% to R6 and still less for higher moments [20].
We have corrected our R4 values to account for c loops,
and we include an uncertainty of 0.1% in our other re-
duced moments to allow for any residual uncertainty due
to sea-quark masses or the absence of c quarks in the sea.

The second major source of uncertainty, significant for
n ≥ 6 only, comes from residual errors due to mistuning
of m0c in the simulation. This results in relative errors of
order 0.2%, and an overall tuning error of order 0.5% [21].
We include the former in the errors reported in the Ta-
ble II for Rn(a), but include the latter only in our final
results (since it affects all Rn(a)s by the same amount).
Other sources of uncertainty in the Rn, like statistics, are
negligible compared to these errors.

The reduced moments from the simulation are, as ex-
pected, only weakly dependent (few percent) upon the
lattice spacing for the lattice spacings we use. To correct
for this variation, we extrapolate each moment to a = 0
by fitting the simulation values to a function of the form

Rn(a) = Rn(0) (1 + c0(apav)2αs + c1(amc)2(apav)2αs

+ c2(amc)4αs + c3(amc)6αs

+c4(amc)8αs + · · ·
)

(9)

where pav ≈ 7mc/n is the typical three momentum car-
ried by the c quark in the lowest-order perturbation the-
ory diagram for Rn [22]. The extrapolated results de-
pend only weakly on the exact functional form used here
provided reasonable Bayesian priors are used for the co-
efficients ci. We use the same Gaussian prior, centered
at zero with width σc, for all of the ci and all values of
n; we tune σc to roughly twice the optimal value indi-
cated by the empirical Bayes procedure described in [23].
(This tuning gives σc = 1/6.) This is quite conserva-
tive, and leads to uncertainties in our final extrapolated
results, Rn(a = 0) (see Table II), that are of order the
amount of the extrapolation from the finest lattice spac-
ing to a = 0. Our extrapolations for the n = 6, 8, 10 mo-
ments are shown in Fig. 1.
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TABLE III: Sources of uncertainty in the determinations of
mc(µ = 3 GeV) from different reduced moments Rn of the
pseudoscalar correlator. The uncertainties listed are percent-
ages of the final result 0.984 (16)GeV.

R6 R8 R10 αMS(MZ)
a2 extrapolation 0.2% 0.3% 0.2% 0.4%
pert’n theory 0.4 0.3 1.3 0.7
αMS uncertainty 0.3 0.4 1.0 0.0
gluon condensate 0.3 0.0 0.3 0.0
statistical errors 0.0 0.0 0.0 0.1
relative scale errors 0.4 0.4 0.4 0.0
overall scale errors 0.6 0.6 0.7 0.1
sea quarks 0.3 0.3 0.3 0.3
finite volume 0.1 0.1 0.3 0.0
Total 1.0% 1.0% 1.9% 0.9%

32, 33]. We did not correct the central values of our
masses for condensate contributions because the conden-
sate’s size is not well known; but we did add a contri-
bution to the uncertainty for each mass that covers the
current range of possible condensate contributions [34].
This has negligible effect on the moments with n ≤ 12
but becomes quite large as n increases.

There are also uncertainties due to the finite spatial
volume of our lattices; our lattices were approximately
2.5 fm across. While our simulations showed no measur-
able volume dependence [19], lattice perturbation theory
shows finite-volume sensitivity for the higher (more in-
frared) moments. This is negligible for lower moments
but grows with n. The finite-volume sensitivity is mostly
an artifact of perturbation theory; confinement signifi-
cantly reduces finite-volume effects. Consequently we as-
sign a finite-volume error to our perturbative factors that
is equal to the entire finite-volume correction in pertur-
bation theory.

One check on the reliability of our analysis comes from
the n = 4 moment, which is dimensionless. We compared
our simulation result for this moment with perturbation
theory in order to extract a new value for the QCD cou-
pling. We obtained

α
(nf =4)

MS
(3 GeV) = 0.230 (18) (15)

which is equivalent to α
(nf =5)

MS
(MZ) = 0.113(4). This

agrees well with the Particle Data Group’s world average
of 0.1176 (20) for the result at µ = MZ [26] but is far
from being the most accurate determination from either
the lattice or the continuum. The bulk of the uncertainty
in our new result for the coupling constant comes from
uncertainties in the a2 extrapolation. Our coupling is
three to four times more sensitive to such effects than
are our mass determinations since the coupling is deter-
mined from radiative corrections (which are suppressed
by a power of αs).

TABLE IV: Simulation results for the reduced moments R(j)
n ,

extrapolated to a = 0, from correlators of local axial-vector
and vector lattice currents, and a point-split lattice vector
current. Corresponding values for mc(µ = 3 GeV) (in GeV)
are also given.

j(5µ)
5µ j(µ)

µ j(1)
µ

n R(j)
n mc(µ) R(j)

n mc(µ) R(j)
n mc(µ)

6 1.243(24) 0.97(3) 1.242(10) 0.99(2) 1.277(29) 0.95(4)
8 1.168(23) 0.95(4) 1.189(9) 0.99(4) 1.182(27) 0.99(5)
10 1.131(22) 0.98(5) 1.167(9) 0.97(5) 1.144(26) 1.00(6)
12 1.106(21) 0.99(6) 1.144(9) 0.97(6) 1.122(26) 1.00(7)
14 1.085(21) 0.98(7) 1.125(9) 0.97(8) 1.103(25) 1.00(9)
16 1.068(21) 1.00(9) 1.110(8) 0.97(10) 1.085(25) 1.00(11)
18 1.098(8) 0.95(13) 1.069(24) 0.99(14)

V. OTHER CORRELATORS

The close agreement between different moments is im-
portant evidence that we understand our systematic er-
rors since these enter quite differently in different mo-
ments. To further check this we repeated our analysis
for three different correlators, which we formed by re-
placing the pseudoscalar operator m0cj5 with each of the
following c-quark currents on the lattice:

j(1)
µ ≡ ψc(x + aµ̂)γµψc(x), (16)

j(µ)
µ ≡ ψc(x)γµψc(x), (17)

j(5µ)
5µ ≡ ψc(x)γ5γµψc(x). (18)

The first two currents are different lattice discretizations
of the vector current and were evaluated for space-like µs;
and the first of these was evaluated in Coulomb gauge.
The third current is a lattice discretization of the axial
vector current and was evaluated for time-like µ. The
superscript on each j labels the “taste” carried by that
operator, using the notation presented in the Appendices
of [13]. Taste is a spurious quantum number, analogous
to flavor, that is an artifact of staggered-quark lattice
discretizations like the HISQ formalism. Taste should not
affect physical results and therefore operators carrying
different taste here should give identical results in the
a → 0 limit. By studying these different currents, we
not only test for conventional systematic errors, but also
verify that HISQ-specific taste effects are negligible [35].

A complication in our lattice analysis of these vector
(or axial-vector) correlators is that none of the currents is
conserved (or partially conserved) on the lattice. Conse-
quently, each lattice current is related to its correspond-
ing continuum operator by a renormalization constant:

jcont = Z(j) j + O(a2) (19)

Z(j) ≡ Z(j)(αMS(π/a), am0c)

where j is one of the lattice currents j(1)
µ , j(µ)

µ , or j(5µ)
5µ ,

and jcont is the continuum current jµ = ψγµψ for the

mc(3 GeV) = 0.988 (10)GeV

mc(mc) = 1.269 (9)GeV
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TABLE III: Sources of uncertainty in the determinations of
mc(µ = 3 GeV) from different reduced moments Rn of the
pseudoscalar correlator. The uncertainties listed are percent-
ages of the final result 0.984 (16)GeV.

R6 R8 R10 αMS(MZ)
a2 extrapolation 0.2% 0.3% 0.2% 0.4%
pert’n theory 0.4 0.9 1.3 0.7
αMS uncertainty 0.3 0.6 1.0 0.0
gluon condensate 0.3 0.0 0.3 0.0
statistical errors 0.0 0.0 0.0 0.1
relative scale errors 0.4 0.4 0.4 0.0
overall scale errors 0.6 0.6 0.7 0.1
sea quarks 0.3 0.3 0.3 0.3
finite volume 0.1 0.1 0.3 0.0
Total 1.0% 1.4% 1.9% 0.9%

To test for nonperturbative effects, we examined the
leading gluon-condensate contribution to our analysis [2,
32, 33]. We did not correct the central values of our
masses for condensate contributions because the conden-
sate’s size is not well known; but we did add a contri-
bution to the uncertainty for each mass that covers the
current range of possible condensate contributions [34].
This has negligible effect on the moments with n ≤ 12
but becomes quite large as n increases.

There are also uncertainties due to the finite spatial
volume of our lattices; our lattices were approximately
2.5 fm across. While our simulations showed no measur-
able volume dependence [19], lattice perturbation theory
shows finite-volume sensitivity for the higher (more in-
frared) moments. This is negligible for lower moments
but grows with n. The finite-volume sensitivity is mostly
an artifact of perturbation theory; confinement signifi-
cantly reduces finite-volume effects. Consequently we as-
sign a finite-volume error to our perturbative factors that
is equal to the entire finite-volume correction in pertur-
bation theory.

One check on the reliability of our analysis comes from
the n = 4 moment, which is dimensionless. We compared
our simulation result for this moment with perturbation
theory in order to extract a new value for the QCD cou-
pling. We obtained

α
(nf =4)

MS
(3 GeV) = 0.230 (18) (15)

which is equivalent to α
(nf =5)

MS
(MZ) = 0.113(4). This

agrees well with the Particle Data Group’s world average
of 0.1176 (20) for the result at µ = MZ [26] but is far
from being the most accurate determination from either
the lattice or the continuum. The bulk of the uncertainty
in our new result for the coupling constant comes from
uncertainties in the a2 extrapolation. Our coupling is
three to four times more sensitive to such effects than
are our mass determinations since the coupling is deter-
mined from radiative corrections (which are suppressed

TABLE IV: Simulation results for the reduced moments R(j)
n ,

extrapolated to a = 0, from correlators of local axial-vector
and vector lattice currents, and a point-split lattice vector
current. Corresponding values for mc(µ = 3 GeV) (in GeV)
are also given.

j(5µ)
5µ j(µ)

µ j(1)
µ

n R(j)
n mc(µ) R(j)

n mc(µ) R(j)
n mc(µ)

6 1.243(24) 0.95(4) 1.268(29) 0.96(4) 1.277(29) 0.95(4)
8 1.168(23) 0.98(4) 1.165(27) 1.01(5) 1.182(27) 0.99(5)
10 1.131(22) 0.98(5) 1.133(26) 1.01(6) 1.144(26) 1.00(6)
12 1.106(21) 0.99(6) 1.118(26) 1.00(7) 1.122(26) 1.00(7)
14 1.085(21) 0.98(7) 1.102(25) 1.00(9) 1.103(25) 1.00(9)
16 1.068(21) 1.00(9) 1.085(25) 1.00(11) 1.085(25) 1.00(11)
18 1.069(25) 0.99(14) 1.069(24) 0.99(14)

by a power of αs).

V. OTHER CORRELATORS

The close agreement between different moments is im-
portant evidence that we understand our systematic er-
rors since these enter quite differently in different mo-
ments. To further check this we repeated our analysis
for three different correlators, which we formed by re-
placing the pseudoscalar operator m0cj5 with each of the
following c-quark currents on the lattice:

j(1)
µ ≡ ψc(x + aµ̂)γµψc(x), (16)

j(µ)
µ ≡ ψc(x)γµψc(x), (17)

j(5µ)
5µ ≡ ψc(x)γ5γµψc(x). (18)

The first two currents are different lattice discretizations
of the vector current and were evaluated for space-like µs;
and the first of these was evaluated in Coulomb gauge.
The third current is a lattice discretization of the axial
vector current and was evaluated for time-like µ. The
superscript on each j labels the “taste” carried by that
operator, using the notation presented in the Appendices
of [13]. Taste is a spurious quantum number, analogous
to flavor, that is an artifact of staggered-quark lattice
discretizations like the HISQ formalism. Taste should not
affect physical results and therefore operators carrying
different taste here should give identical results in the
a → 0 limit. By studying these different currents, we
not only test for conventional systematic errors, but also
verify that HISQ-specific taste effects are negligible [35].

A complication in our lattice analysis of these vector
(or axial-vector) correlators is that none of the currents is
conserved (or partially conserved) on the lattice. Conse-
quently, each lattice current is related to its correspond-
ing continuum operator by a renormalization constant:

jcont = Z(j) j + O(a2) (19)

Z(j) ≡ Z(j)(αMS(π/a), am0c)

•  Three different tastes
•  Not conserved
•  Hence  jcont = Zj jlat + O(a^2)

Redefine reduced moments to remove Zj :
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where j is one of the lattice currents j(1)
µ , j(µ)

µ , or j(5µ)
5µ ,

and jcont is the continuum current jµ = ψγµψ for the
first two js and j5µ = ψγ5γµψ for the last. Consequently
moments of the correlators of these lattice currents have
the form

G(j)
n =

1
Z(j)2

g(jcont)
n (αMS(µ), µ/mc)

(amc(µ))n−2
. (20)

where Z(j)2G(j)
n is the continuum result for n ≥ 4. To

cancel the renormalization factor we redefine the reduced
moments for these correlators to be

R(j)
n ≡ am(j)

2am0c

(
G(j)

n

G(j)
n−2

G(j0)
n−2

G(j0)
n

)1/2

(21)

≡
r(jcont)
n (αMS, µ/mc)

2mc(µ)/m(j)
(22)

where n ≥ 6, and m(j) is the ψ mass for the vector cur-
rents (which couple to the ψ) and the ηc mass for the
axial-vector current. Again we divide each moment G(j)

n

by its value G(j0)
n in leading-order lattice perturbation

theory in order to minimize finite-lattice-spacing errors.
And again the perturbative expansion for r(jcont)

n can be
obtained from continuum perturbation theory expansions
for the g(jcont)

n (see the Appendix).
Our simulation results for R(j)

n , extrapolated to lat-
tice spacing a = 0, are given in Table IV for different
moments n and each of the three currents. Perturbative
coefficients for the vector-current r(jcont)

n s are discussed
in the Appendix; the coefficients for the temporal axial-
vector current can be derived from the pseudoscalar co-
efficients (also in the Appendix) using Ward identities
which imply [36]:

r(j5µ)
n =

(
rn−2
n+2/rn−4

n

)1/2
. (23)

By combining perturbative with nonperturbative results,
we obtain the values for mc(µ), with µ = 3 GeV, that
are listed in Table IV and plotted in the top-right and
bottom panels of Figure 2. Results from all moments
agree with each other and with the pseudoscalar result
(the gray band in the plots), although here the errors are
about twice as large for the smaller moments.

VI. CONCLUSIONS

Our results are by far the most accurate determination
of the c-quark mass from lattice QCD [37]. Such precision
is possible because the matching between lattice param-
eters and continuum parameters here relies upon contin-
uum perturbation theory, which is much simpler than
lattice QCD perturbation theory. Consequently pertur-
bation theory can be pushed to much higher orders.
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FIG. 3: mc(µ = 3GeV) from large-n moments of the pseu-
doscalar and the (local) vector correlators. The gray band is
our final result for the mass, 0.984 (16)GeV. The perturba-
tive part of the analysis was evaluated at µ = mc(µ) using
formulas from [7], and the results evolved to µ = 3GeV us-
ing fourth-order evolution. Uncertainties due to the gluon
condensate are not included (see text).

The agreement between masses from different mo-
ments, and from different correlators— 27 determina-
tions in all — is an important check on systematic errors
of all sorts since these enter in very different ways in each
calculation. Note that the different reduced moments in
our analysis vary in value by as much as 43% (from 1.06
to 1.52), and yet they all agree on the value of mc to
within a few percent once we account for differences in
the perturbative parts.

One surprising feature of our results is that even the
higher moments give correct values for the quark mass,
albeit with larger errors. Nonperturbative effects grow
with n but our results show no systematic deviation un-
til very large n, as is evident in Fig. 3 which shows results
for 20 ≤ n ≤ 62. We have not included potential errors
due to the gluon condensate in this figure. The error
bars would have been much larger had we done so. For
example, they would have been about 5 times larger at
n = 40 in the pseudoscalar plot (16% rather than 3%).
This might suggest that the condensate is smaller than
we allowed for— say 〈αsG2/π〉 ≤ 0.003 GeV4 — but we
have not analyzed this carefully enough to make a strong
statement. The error bars shown in the plots start to
grow rapidly just where it becomes clear that perturba-
tion theory is failing (because of large coefficients).

Our lattice result for the mass, mc(3 GeV) =
0.984 (16)GeV, agrees well with the continuum deter-
mination, which uses e+e− annihilation data and gives
0.986 (13)GeV [2]. This provides further strong evidence
that the different systematic errors in each calculation
are understood. The lattice analysis will be improved as
data becomes available for smaller lattice spacings. Also
a very accurate c-quark mass will allow us to make sim-
ilarly accurate determinations of the s-quark mass [38].
This is because the ratio mc/ms can be determined very

Compare quenched study: Bochkarev & de Forcrand, Nucl Phys B477,  489 (1996)
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TABLE II: Simulation results for Rn(a) for different lattice spacings a and moments n. The inverse lattice spacing is in GeV.
Extrapolations to a = 0 are given for each n, together with the corresponding value (in GeV) for mc(µ) when µ = 3 GeV.

a−1 1.31 1.31 1.62 1.60 1.63 2.26 2.28 3.24 Rn(a = 0) mc(µ)
R6 1.446(3) 1.445(3) 1.493(3) 1.490(3) 1.489(3) 1.512(3) 1.510(3) 1.518(3) 1.524(6) 0.989(10)
R8 1.372(3) 1.372(3) 1.387(3) 1.387(3) 1.384(3) 1.375(3) 1.373(3) 1.371(3) 1.369(6) 0.987(10)
R10 1.329(3) 1.329(3) 1.327(3) 1.327(3) 1.324(3) 1.307(3) 1.306(3) 1.304(3) 1.302(6) 0.975(18)
R12 1.294(3) 1.294(3) 1.285(3) 1.284(3) 1.281(3) 1.264(3) 1.263(3) 1.263(3) 1.262(5) 0.972(23)
R14 1.265(3) 1.265(3) 1.253(3) 1.252(3) 1.249(3) 1.233(3) 1.232(3) 1.233(3) 1.233(5) 0.971(28)
R16 1.240(3) 1.240(3) 1.229(3) 1.227(3) 1.224(3) 1.208(3) 1.207(3) 1.211(3) 1.211(5) 0.969(33)
R18 1.219(3) 1.219(3) 1.209(3) 1.206(3) 1.204(3) 1.189(2) 1.188(2) 1.192(3) 1.193(5) 0.968(38)

IV. EXTRACTING mc(µ)

To convert the extrapolated reduced moments into
c masses, we require perturbative expansions for the rn in
Eq. (8). These are easily computed from the expansions
for gn [3–9] using Eq. (7); details can be found in the Ap-
pendix. The perturbative expansions have the form

rn = 1 + rn,1αMS(µ) + rn,2α
2
MS

+ rn,3α
3
MS

+ . . . (10)

where we set the renormalization scale µ to 3 GeV [24].
The full third-order coefficients for the n = 4, 6 moments
were computed for this analysis and are presented in the
Appendix. The third-order coefficients for moments with
n ≥ 8 are only partially complete: our analysis includes
all µ-dependent terms (that is, logn(µ/mc) terms), but
the constant parts have not yet been computed. Conse-
quently we take the truncation uncertainty in rn to be of
order [25]

σrn =






rmax
n α4

MS
(µ) for n = 4, 6,

rmax
n α3

MS
(µ) for n ≥ 8,

(11)

where

rmax
n = max (|rn,1|, |rn,2|, |rn,3|) . (12)

In this paper we use αMS(3 GeV) = 0.252 (10) for the
(nf = 4) coupling constant. We derived this from the
current Particle Data Group average for the nf = 5 cou-
pling at µ = MZ , which is 0.1176 (20) [26].

Note that coefficients in the rn expansion, Eq. (10),
depend upon mc(µ) through scale-dependent loga-
rithms, logn(µ/mc(µ)). Consequently Eq. (8) is an im-
plicit equation for mc(µ), since the mass appears on both
sides of the equation. The mc(µ)-dependence on the
right-hand side, however, is suppressed by αMS(µ), and
therefore the equation is easily solved numerically.

Our final results for the c-quark’s mass, mc(µ) at
µ = 3 GeV in the MS scheme, are listed in Table II, and
plotted in the upper-left panel of Figure 2. As is clear
from the figure, all moments agree on the mass although
the higher moments may be less trustworthy (see [2]).
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FIG. 2: mc(µ = 3 GeV) from different moments of correlators
built from four different lattice operators. The gray band is
our final result for the mass, 0.984 (16)GeV, which comes
from the first three moments of the pseudoscalar correlator
(upper-left panel).

We obtain our final result from the first three moments
(n = 6, 8, 10), which average to give:

mc(3 GeV) = 0.984 (16)GeV (13)

Evolving down to scale µ = mc(µ) using fourth-order
evolution [27–30], this is equivalent to [31]

mc(mc) = 1.266 (14)GeV. (14)

The leading sources of uncertainty in mc(µ) are listed
in Table III for each of the four lowest moments. Most of
the systematic changes with n in these uncertainties are
due to the fact that the moments become increasingly in-
frared as n increases. Consequently, we are not surprised
to see uncertainties related to the convergence of pertur-
bation theory grow as n grows, while uncertainties due to
the finite lattice spacing a decrease. Similarly nonpertur-
bative effects in the continuum part of our analysis are
expected to be negligible for the lower moments (n ≤ 10
at least [2]), but could become important for larger n as
confinement turns on.

To test for nonperturbative effects, we examined the
leading gluon-condensate contribution to our analysis [2,
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TABLE III: Sources of uncertainty in the determinations of
mc(µ = 3 GeV) from different reduced moments Rn of the
pseudoscalar correlator. The uncertainties listed are percent-
ages of the final result 0.984 (16)GeV.

R6 R8 R10 αMS(MZ)
a2 extrapolation 0.2% 0.3% 0.2% 0.4%
pert’n theory 0.4 0.9 1.3 0.7
αMS uncertainty 0.3 0.6 1.0 0.0
gluon condensate 0.3 0.0 0.3 0.0
statistical errors 0.0 0.0 0.0 0.1
relative scale errors 0.4 0.4 0.4 0.0
overall scale errors 0.6 0.6 0.7 0.1
sea quarks 0.3 0.3 0.3 0.3
finite volume 0.1 0.1 0.3 0.0
Total 1.0% 1.4% 1.9% 0.9%

To test for nonperturbative effects, we examined the
leading gluon-condensate contribution to our analysis [2,
32, 33]. We did not correct the central values of our
masses for condensate contributions because the conden-
sate’s size is not well known; but we did add a contri-
bution to the uncertainty for each mass that covers the
current range of possible condensate contributions [34].
This has negligible effect on the moments with n ≤ 12
but becomes quite large as n increases.

There are also uncertainties due to the finite spatial
volume of our lattices; our lattices were approximately
2.5 fm across. While our simulations showed no measur-
able volume dependence [19], lattice perturbation theory
shows finite-volume sensitivity for the higher (more in-
frared) moments. This is negligible for lower moments
but grows with n. The finite-volume sensitivity is mostly
an artifact of perturbation theory; confinement signifi-
cantly reduces finite-volume effects. Consequently we as-
sign a finite-volume error to our perturbative factors that
is equal to the entire finite-volume correction in pertur-
bation theory.

One check on the reliability of our analysis comes from
the n = 4 moment, which is dimensionless. We compared
our simulation result for this moment with perturbation
theory in order to extract a new value for the QCD cou-
pling. We obtained

α
(nf =4)

MS
(3 GeV) = 0.230 (18) (15)

which is equivalent to α
(nf =5)

MS
(MZ) = 0.113(4). This

agrees well with the Particle Data Group’s world average
of 0.1176 (20) for the result at µ = MZ [26] but is far
from being the most accurate determination from either
the lattice or the continuum. The bulk of the uncertainty
in our new result for the coupling constant comes from
uncertainties in the a2 extrapolation. Our coupling is
three to four times more sensitive to such effects than
are our mass determinations since the coupling is deter-
mined from radiative corrections (which are suppressed

TABLE IV: Simulation results for the reduced moments R(j)
n ,

extrapolated to a = 0, from correlators of local axial-vector
and vector lattice currents, and a point-split lattice vector
current. Corresponding values for mc(µ = 3 GeV) (in GeV)
are also given.

j(5µ)
5µ j(µ)

µ j(1)
µ

n R(j)
n mc(µ) R(j)

n mc(µ) R(j)
n mc(µ)

6 1.243(24) 0.95(4) 1.268(29) 0.96(4) 1.277(29) 0.95(4)
8 1.168(23) 0.98(4) 1.165(27) 1.01(5) 1.182(27) 0.99(5)
10 1.131(22) 0.98(5) 1.133(26) 1.01(6) 1.144(26) 1.00(6)
12 1.106(21) 0.99(6) 1.118(26) 1.00(7) 1.122(26) 1.00(7)
14 1.085(21) 0.98(7) 1.102(25) 1.00(9) 1.103(25) 1.00(9)
16 1.068(21) 1.00(9) 1.085(25) 1.00(11) 1.085(25) 1.00(11)
18 1.069(25) 0.99(14) 1.069(24) 0.99(14)

by a power of αs).

V. OTHER CORRELATORS

The close agreement between different moments is im-
portant evidence that we understand our systematic er-
rors since these enter quite differently in different mo-
ments. To further check this we repeated our analysis
for three different correlators, which we formed by re-
placing the pseudoscalar operator m0cj5 with each of the
following c-quark currents on the lattice:

j(1)
µ ≡ ψc(x + aµ̂)γµψc(x), (16)

j(µ)
µ ≡ ψc(x)γµψc(x), (17)

j(5µ)
5µ ≡ ψc(x)γ5γµψc(x). (18)

The first two currents are different lattice discretizations
of the vector current and were evaluated for space-like µs;
and the first of these was evaluated in Coulomb gauge.
The third current is a lattice discretization of the axial
vector current and was evaluated for time-like µ. The
superscript on each j labels the “taste” carried by that
operator, using the notation presented in the Appendices
of [13]. Taste is a spurious quantum number, analogous
to flavor, that is an artifact of staggered-quark lattice
discretizations like the HISQ formalism. Taste should not
affect physical results and therefore operators carrying
different taste here should give identical results in the
a → 0 limit. By studying these different currents, we
not only test for conventional systematic errors, but also
verify that HISQ-specific taste effects are negligible [35].

A complication in our lattice analysis of these vector
(or axial-vector) correlators is that none of the currents is
conserved (or partially conserved) on the lattice. Conse-
quently, each lattice current is related to its correspond-
ing continuum operator by a renormalization constant:

jcont = Z(j) j + O(a2) (19)

Z(j) ≡ Z(j)(αMS(π/a), am0c)
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TABLE III: Sources of uncertainty in the determinations of
mc(µ = 3 GeV) from different reduced moments Rn of the
pseudoscalar correlator. The uncertainties listed are percent-
ages of the final result 0.984 (16)GeV.

R6 R8 R10 αMS(MZ)
a2 extrapolation 0.2% 0.3% 0.2% 0.4%
pert’n theory 0.4 0.9 1.3 0.7
αMS uncertainty 0.3 0.6 1.0 0.0
gluon condensate 0.3 0.0 0.3 0.0
statistical errors 0.0 0.0 0.0 0.1
relative scale errors 0.4 0.4 0.4 0.0
overall scale errors 0.6 0.6 0.7 0.1
sea quarks 0.3 0.3 0.3 0.3
finite volume 0.1 0.1 0.3 0.0
Total 1.0% 1.4% 1.9% 0.9%

To test for nonperturbative effects, we examined the
leading gluon-condensate contribution to our analysis [2,
32, 33]. We did not correct the central values of our
masses for condensate contributions because the conden-
sate’s size is not well known; but we did add a contri-
bution to the uncertainty for each mass that covers the
current range of possible condensate contributions [34].
This has negligible effect on the moments with n ≤ 12
but becomes quite large as n increases.

There are also uncertainties due to the finite spatial
volume of our lattices; our lattices were approximately
2.5 fm across. While our simulations showed no measur-
able volume dependence [19], lattice perturbation theory
shows finite-volume sensitivity for the higher (more in-
frared) moments. This is negligible for lower moments
but grows with n. The finite-volume sensitivity is mostly
an artifact of perturbation theory; confinement signifi-
cantly reduces finite-volume effects. Consequently we as-
sign a finite-volume error to our perturbative factors that
is equal to the entire finite-volume correction in pertur-
bation theory.

One check on the reliability of our analysis comes from
the n = 4 moment, which is dimensionless. We compared
our simulation result for this moment with perturbation
theory in order to extract a new value for the QCD cou-
pling. We obtained

α
(nf =4)

MS
(3 GeV) = 0.230 (18) (15)

which is equivalent to α
(nf =5)

MS
(MZ) = 0.113(4). This

agrees well with the Particle Data Group’s world average
of 0.1176 (20) for the result at µ = MZ [26] but is far
from being the most accurate determination from either
the lattice or the continuum. The bulk of the uncertainty
in our new result for the coupling constant comes from
uncertainties in the a2 extrapolation. Our coupling is
three to four times more sensitive to such effects than
are our mass determinations since the coupling is deter-
mined from radiative corrections (which are suppressed

TABLE IV: Simulation results for the reduced moments R(j)
n ,

extrapolated to a = 0, from correlators of local axial-vector
and vector lattice currents, and a point-split lattice vector
current. Corresponding values for mc(µ = 3 GeV) (in GeV)
are also given.

j(5µ)
5µ j(µ)

µ j(1)
µ

n R(j)
n mc(µ) R(j)

n mc(µ) R(j)
n mc(µ)

6 1.243(24) 0.95(4) 1.268(29) 0.96(4) 1.277(29) 0.95(4)
8 1.168(23) 0.98(4) 1.165(27) 1.01(5) 1.182(27) 0.99(5)
10 1.131(22) 0.98(5) 1.133(26) 1.01(6) 1.144(26) 1.00(6)
12 1.106(21) 0.99(6) 1.118(26) 1.00(7) 1.122(26) 1.00(7)
14 1.085(21) 0.98(7) 1.102(25) 1.00(9) 1.103(25) 1.00(9)
16 1.068(21) 1.00(9) 1.085(25) 1.00(11) 1.085(25) 1.00(11)
18 1.069(25) 0.99(14) 1.069(24) 0.99(14)

by a power of αs).

V. OTHER CORRELATORS

The close agreement between different moments is im-
portant evidence that we understand our systematic er-
rors since these enter quite differently in different mo-
ments. To further check this we repeated our analysis
for three different correlators, which we formed by re-
placing the pseudoscalar operator m0cj5 with each of the
following c-quark currents on the lattice:

j(1)
µ ≡ ψc(x + aµ̂)γµψc(x), (16)

j(µ)
µ ≡ ψc(x)γµψc(x), (17)

j(5µ)
5µ ≡ ψc(x)γ5γµψc(x). (18)

The first two currents are different lattice discretizations
of the vector current and were evaluated for space-like µs;
and the first of these was evaluated in Coulomb gauge.
The third current is a lattice discretization of the axial
vector current and was evaluated for time-like µ. The
superscript on each j labels the “taste” carried by that
operator, using the notation presented in the Appendices
of [13]. Taste is a spurious quantum number, analogous
to flavor, that is an artifact of staggered-quark lattice
discretizations like the HISQ formalism. Taste should not
affect physical results and therefore operators carrying
different taste here should give identical results in the
a → 0 limit. By studying these different currents, we
not only test for conventional systematic errors, but also
verify that HISQ-specific taste effects are negligible [35].

A complication in our lattice analysis of these vector
(or axial-vector) correlators is that none of the currents is
conserved (or partially conserved) on the lattice. Conse-
quently, each lattice current is related to its correspond-
ing continuum operator by a renormalization constant:

jcont = Z(j) j + O(a2) (19)

Z(j) ≡ Z(j)(αMS(π/a), am0c)
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We use lattice QCD simulations, with MILC configurations (including vacuum polarization from
u, d, and s quarks), to update our previous determinations of the QCD coupling constant. Our
new analysis uses results from 5 different lattice spacings and 11 different combinations of sea-quark
masses to significantly reduce our previous errors. We also correct for finite-lattice-spacing errors
in the scale setting, and for nonperturbative chiral corrections to the 22 short-distance quantities
from which we extract the coupling. Our final result is αV (7.5GeV, nf = 3) = 0.2121 (25), which
is equivalent to αMS(MZ , nf =5) = 0.1183 (7). We compare this with our previous result, which is
about one standard deviation lower.

PACS numbers: 11.15.Ha,12.38.Aw,12.38.Gc

I. INTRODUCTION

An accurate value for the coupling constant αs in quan-
tum chromodynamics (QCD) is important both for QCD
phenomenology, and as an input for possible theories be-
yond the Standard Model. Some of the most accurate
values for the coupling constant come from numerical
simulations of QCD using lattice techniques, when com-
bined with very accurate experimental data for hadron
masses. In this paper we update our previous determi-
nations of the coupling from lattice QCD [1]. Our new
analysis takes advantage of new simulation results, from
the MILC collaboration, that employ smaller lattice spac-
ings a. We also now account systematically for chiral
corrections associated with the masses of sea quarks in
the simulation, and for O(an) uncertainties in the values
we use for the lattice spacing.

Few-percent accurate QCD simulations have only be-
come possible in the last few years, with the development
of much more efficient techniques for simulating the sea
quarks; see, for example, [2] for an overview and refer-
ences. The simulations we use include only light quarks
(u, d and s) in the vacuum polarization; the effects of c
and b quarks are incorporated using perturbation theory,
which is possible because of their large masses. Our lat-
tice QCD analysis proceeds in two steps. First the QCD
parameters — the bare coupling constant and bare quark
masses in the Lagrangian— must be tuned. For each
value of the bare coupling, we set the lattice spacing to
reproduce the correct Υ′–Υ meson mass difference in the
simulations, while we tune the u/d, s, c and b masses
to give correct values for m2

π, 2m2
K −m2

π, mηc , and mΥ,
respectively; more information can be found in [2]. For
efficiency we set mu = md; this leads to negligible errors

∗Electronic address: g.p.lepage@cornell.edu

in the analysis presented here. Once these parameters
are set, there are no further physics parameters, and the
simulation will accurately reproduce QCD.

Having an accurately tuned simulation of QCD, we
use it to compute nonperturbative values for a variety of
short-distance quantities, each of which has a perturba-
tive expansion of the form

Y =
∞∑

n=1

cnαn
V (d/a) (1)

where cn and d are dimensionless a-independent con-
stants, and αV (d/a) is the (running) QCD coupling con-
stant, with nf = 3 light-quark flavors, in the V scheme [3,
4]. Given the coefficients cn, which are computed using
Feynman diagrams, we determine αV (d/a) such that the
perturbative formula for Y reproduces the nonperturba-
tive value given by the simulation. Given d and a, and
the c and b masses, we can then use perturbation theory
to convert αV (d/a) to the more conventional coupling
constant αMS(MZ , nf =5), evaluated at the mass of the
Z meson.

This analysis is complicated by nonperturbative con-
tributions to Y and by simulation uncertainties in the
value of the lattice spacing a, which enters Eq. (1). It
is also complicated by the fact that we only know the
values of the coefficients cn through order n = 3 for the
quantities we examine. The main focus of this paper is
to address these complications, and quantify the uncer-
tainties in our determination of the coupling constant. In
Section II we review the perturbative expansions for our
short-distance quantities, all but one of which are derived
from small Wilson loops [5]. The Monte Carlo simulation
results for these loops are presented in Section III. We
discuss finite-lattice-spacing errors and chiral corrections
in Section IV. In Section V, we describe how we combine
perturbation theory with simulation results using con-
strained (Bayesian) fitting methods. There we present
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Wilson Loops

• UV singular ⇒ perturbative

• an errors highly suppressed (IR nonperturbative)

• a-dependent coupling scale

• c1, c2, c3 from numerical evaluation of Feyman diagrams

• c4 ... c10 ...  from fit to a dependence

log(W ) =
∞∑

n=1

cnαV (d/a)

×
(
1 + wma(2mu/d + ms) + · · ·

)

nonperturbative
corrections



What’s new?

• 11 configurations, covering wide range of sea-quark masses 
and 5 lattice spacings, including 40% smaller lattice spacing.

• Better use of MILC’s r1/a (smaller errors for ratio of scales), 
including an and chiral corrections to r1.

• Fit nonperturbative chiral corrections to log(W).

• New result is one sigma above old result. 



Results 6

to be sure we have reached this point, but, as it turns
out, our analysis is not sufficiently accurate to yield new
information about cns with n > 6 (beyond what is incor-
porated in the prior). By adding enough cns so that the
fit results and errors cease changing, we guarantee that
our final error estimates include the full uncertainty due
to the fact that we have a priori values for only a few of
the coefficients.

Other fit parameters, like α0, y(1)
m , r(2)

1a , and r(1)
1m, must

also have priors:

δχ2
0 =

(log(α0)− log(α0))2

σ2
log(α0)

+
(y(1)

m − y(1)
m )2

σ2
y(1)

m

+
(r(2)

1a − r(2)
1a )2

σ2
r(2)
1a

+
(r(1)

1m − r(1)
1m)2

σ2
r(1)
1m

(23)

We constrain log(α0) to be −1.6 ± 0.5; this prior has
negligible effect on the fits because it is so broad (and
the fits are so sensitive to α0). Following the discussion
in Section IV, we set

y(1)
m = r(1)

1m = 0
σ

y(1)
m

= σ
r(1)
1m

= 1/6. (24)

We used the empirical Bayes criterion to check the width
of these two priors and found that, in fact, this is the op-
timal width indicated by our simulation results. For r(2)

1a ,
the empirical Bayes criterion suggested a width for the
prior that is twice what we anticipated in Section IVC:

r(2)
1a = 0 σ

r(2)
1a

= 2αV ≈ 0.6. (25)

We used this more conservative prior in our fits. Higher-
order corrections are easily added but have no impact
because the corrections are too small to matter, given
the size of our other errors.

Our simulation result for (r1/a)i, which is used to de-
termine the lattice spacing ai for the ith configuration set
(Eq. (20)), is not exact. To include its uncertainty in our
analysis we treat (r1/a)i as a fit parameter, to be varied
while minimizing χ2, but with a prior whose mean is the
value measured in the simulation and whose width is the
measured uncertainty (as in Table II). We can incorpo-
rate the uncertainty in the value of r1 using the same
trick, with r1 as a fit parameter:

δχ2
r1 =

(r1 − r1)2

σ2
r1

+
11∑

i=1

((r1/a)i − (r1/a)i)
σ2

(r1/a)i

(26)

where r1 ± σr1 = 0.321± 0.005 fm [9].
The c and b masses are required to convert α0 to

αMS(MZ , nf = 5). We account for the uncertainties in
these masses by including fit parameters, with appropri-
ate priors, for them, together with parameters to account
for unknown high-order terms in the MS β-function, and
in the perturbative formulas for incorporating c and b
vacuum polarization. We use c and b masses of mc(mc) =
1.266± 0.014 GeV and mb(mb) = 4.20± 0.04 GeV [10].
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FIG. 1: Values for the 5-flavor αMS at the Z-meson mass from
each of 22 short-distance quantities. The gray band indicates
our final result, 0.1183 (7). χ2 per data point is 0.7.

B. Results

The results from our 22 determinations of the coupling
are listed and shown in Figure 1. The gray band corre-
sponds to our final result of

αMS(MZ , nf =5) = 0.1183 (7) (27)

which was obtained from a weighted average of all of
22 determinations [15]. Our error estimate here is that
of a typical entry in the plot; combining our results does
not reduce errors because most of the uncertainty in each
result is systematic. The individual results in the plot are
consistent with each other: χ2/22 = 0.7 for the 22 entries
in Figure 1. And the fits for each quantity separately are
excellent as well: χ2/11 = 0.4 to 0.7 for our fits to the
11 pieces of simulation data (one from each configuration
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to be sure we have reached this point, but, as it turns
out, our analysis is not sufficiently accurate to yield new
information about cns with n > 6 (beyond what is incor-
porated in the prior). By adding enough cns so that the
fit results and errors cease changing, we guarantee that
our final error estimates include the full uncertainty due
to the fact that we have a priori values for only a few of
the coefficients.

Other fit parameters, like α0, y(1)
m , r(2)

1a , and r(1)
1m, must

also have priors:

δχ2
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log(α0)
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We constrain log(α0) to be −1.6 ± 0.5; this prior has
negligible effect on the fits because it is so broad (and
the fits are so sensitive to α0). Following the discussion
in Section IV, we set

y(1)
m = r(1)

1m = 0
σ

y(1)
m

= σ
r(1)
1m

= 1/6. (24)

We used the empirical Bayes criterion to check the width
of these two priors and found that, in fact, this is the op-
timal width indicated by our simulation results. For r(2)

1a ,
the empirical Bayes criterion suggested a width for the
prior that is twice what we anticipated in Section IVC:

r(2)
1a = 0 σ

r(2)
1a

= 2αV ≈ 0.6. (25)

We used this more conservative prior in our fits. Higher-
order corrections are easily added but have no impact
because the corrections are too small to matter, given
the size of our other errors.

Our simulation result for (r1/a)i, which is used to de-
termine the lattice spacing ai for the ith configuration set
(Eq. (20)), is not exact. To include its uncertainty in our
analysis we treat (r1/a)i as a fit parameter, to be varied
while minimizing χ2, but with a prior whose mean is the
value measured in the simulation and whose width is the
measured uncertainty (as in Table II). We can incorpo-
rate the uncertainty in the value of r1 using the same
trick, with r1 as a fit parameter:

δχ2
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(r1 − r1)2

σ2
r1

+
11∑

i=1

((r1/a)i − (r1/a)i)
σ2

(r1/a)i

(26)

where r1 ± σr1 = 0.321± 0.005 fm [9].
The c and b masses are required to convert α0 to

αMS(MZ , nf = 5). We account for the uncertainties in
these masses by including fit parameters, with appropri-
ate priors, for them, together with parameters to account
for unknown high-order terms in the MS β-function, and
in the perturbative formulas for incorporating c and b
vacuum polarization. We use c and b masses of mc(mc) =
1.266± 0.014 GeV and mb(mb) = 4.20± 0.04 GeV [10].
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FIG. 1: Values for the 5-flavor αMS at the Z-meson mass from
each of 22 short-distance quantities. The gray band indicates
our final result, 0.1183 (7). χ2 per data point is 0.7.

B. Results

The results from our 22 determinations of the coupling
are listed and shown in Figure 1. The gray band corre-
sponds to our final result of

αMS(MZ , nf =5) = 0.1183 (7) (27)

which was obtained from a weighted average of all of
22 determinations [15]. Our error estimate here is that
of a typical entry in the plot; combining our results does
not reduce errors because most of the uncertainty in each
result is systematic. The individual results in the plot are
consistent with each other: χ2/22 = 0.7 for the 22 entries
in Figure 1. And the fits for each quantity separately are
excellent as well: χ2/11 = 0.4 to 0.7 for our fits to the
11 pieces of simulation data (one from each configuration

7

0.2

0.4

0.6

0.8

1

α
V

(d
/a

)

2 4 6 8 10

d/a (in GeV)

FIG. 2: Values for αV versus d/a from each short-distance
quantity at each lattice spacing. The dashed lines show pre-
dictions from QCD evolution (Eq. (7)) assuming our compos-
ite fit value (Eq. (28)).

set) for each quantity. The results in Figure 1 are derived,
using perturbation theory (Section II), from the fit values
for α0, which average to

α0 = αV (7.5 GeV, nf =3) = 0.2121 (25), (28)

where again the error is that of a typical result for a single
short-distance quantity (it is not reduced by one over the
square root of the number of inputs).

The self-consistency of our fits is also illustrated by
Figure 2, which shows the values of αV (d/a) coming from
every short-distance quantity for every lattice spacing in
our configuration sets. The result expected from pertur-
bative evolution (Eq. (7) with Eq. (28)), is also shown.
This plot illustrates the ranges of momentum scales and
αV values that go into our analysis. The error bars give
a sense of the precision with which we can determine αV

at different scales.
Although overall agreement is excellent, two of our re-

sults in Figure 1 are somewhat lower than the others.
Coincidently, perhaps, both involve W23, which is the
largest Wilson loop we consider. Closer examination of
these two quantities did not reveal other anomalies, so it
seems likely that these are simply outliers —as expected
in any study of this size. Omitting these two results
would increase our composite result for αMS(MZ) by less
than a quarter of a standard deviation, which is negligi-
ble.

It is useful to separate our error estimates into compo-
nent pieces. The error estimate produced by our fitting
code for a quantity like αMS is approximately linear in
all the variances σ2 that appear in the χ2 function:

σ2
αMS

≈
11∑

i=1

cYi σ2
Yi

+
10∑

n=1

ccn σ2
cn

+ c
y(1)

m
σ2

y(1)
m

+ c
r(1)
1m

σ2
r(1)
1m

+ c
r(2)
1a

σ2
r(2)
1a

+ · · · (29)

This works when errors are small, as they are here. To
isolate the part of the total error that is associated with
the statistical uncertainties in the Yi, for example, the fit
is rerun but with the corresponding variances rescaled by
a factor f close to one (f = 1.01, for example):

σ2
Yi
→ fσ2

Yi
(30)

for i = 1 . . . 11. Then

σ2
αMS

(f)− σ2
αMS

(f =1)
f − 1

≈
11∑

i=1

cYi σ2
Yi

(31)

The square root of this quantity is the part of the total
error due to the statistical uncertainties in the Yi. This
procedure can be repeated for each prior or group of pri-
ors that contributes to the χ2 function. The sum of the
variances obtained in this way for each part of the total
error should equal σ2

αMS
; if it does not, errors may not

be sufficiently small to justify the linear approximation
in Eq. (29) [16].

In Table IV we present error budgets computed in this
fashion for a sample of our determinations of αMS(MZ).
This table shows that our largest errors come from un-
certainties in the perturbative coefficients with n ≥ 4,
statistical errors in the simulation values for (r1/a)i,
systematic uncertainties in the physical value for r1,
finite-a lattice errors in r1, and chiral effects in the W s
and r1. Uncertainties in the parameters used to convert
α0 = αV (7.5 GeV, nf = 3) into αMS(MZ , nf = 5) have
negligible impact. Also negligible are uncertainties due
to the gluon condensate, and statistical errors in the Wil-
son loops.

Our errors are greatly reduced because we can bound
the size of perturbative coefficients cn for n = 4 and
beyond. This is possible because we are fitting simula-
tion data from five different lattice spacings simultane-
ously. As noted in [1], the n = 4 coefficients are large,
particularly for log(W )s where typically our fits imply
c4/c1 ≈ −5(2).

We tested the stability of our analysis procedure by
omitting data and refitting. Dropping data for any one of
the lattice spacings other than the smallest (configuration
sets 9–11) gave results almost identical to our final re-
sult: αMS(MZ) ranged between 0.1182(8) and 0.1184(8).
Dropping results from the smallest lattice spacing had
a bigger impact, shifting αMS(MZ) to 0.1179(11) which
is down by half a standard deviation and has a much
larger error. A similar shift and increase in error is seen
if data is discarded for all lattice spacings other than the
two smallest (sets 7–11). The changes in every case that
we examined were all within a standard deviation, sug-
gesting that our procedure for estimating errors is quite
robust.

Our new result is about one standard deviation above
our previous result [1], and has errors that are about 40%
smaller. Our new analysis differs in two important ways
from our earlier work. First we include more lattice spac-
ings, including one that is 40% smaller than the smallest



Summary (Preliminary)

• c-quark HISQ correlators imply (nf=5):

• b-quark NRQCD correlator implies (nf=5):

• New analysis of coupling (nf=5):

mb(mb) = 4.20 (4)GeV

αMSB(MZ) = 0.1183 (7)

HISQ cc correlators agree
with continuum to <1%

mc(mc) = 1.269 (9)GeV
αMSB(MZ) = 0.1173 (10)


