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LHC will explore Higgs-Sector.
— Interest in theoretical predictions on Higgs properties.

Due totriviality of Higgs-Sector, cutofA cannot be removed.
— Only cutoff-dependentiggs mass bounds” (A), mi3¥(A).

With requirement of minimal value fak (e.g. by experiment)
cutoff-dependent bounds translate iatosoluteHiggs mass bounds.

Absoluteand A-dependent Higgs mass bounds are important for...
1. narrowing the possible energy range, where to expect itdpgsH
2. determining the energy scale, where new physics sets in,
once the Higgs is actually discovered at the LHC.



Higgs mass bounds have been derived from perturbationytheor
— Upper boundLandau pole
— Lower bound:acuum instability

Picture taken from Hagiwarg al. (Particle Data Group)
Phys. Rev. D66 (2002)
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Lattice Higgs andHiggs-Yukawamodels investigated in 1990’s, but...

— ...Higgs-models do not include fermions.

— ...earlier Higgs-Yukawa modeéscplicitly brokechiral symmetry
although indispensable for chiral theories.
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becausevacuum instabilityonly relict of perturbation theory
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Solution: Study Higgs-Sectaron-perturbativelye.g. on the lattice.

Lattice Higgs andHiggs-Yukawamodels investigated in 1990’s, but...

— ...Higgs-models do not include fermions.

— ...earlier Higgs-Yukawa modeéscplicitly brokechiral symmetry
although indispensable for chiral theories.

‘ Study lattice Higgs-Yukawa model with built-in chiral syretry. I




In pure Higgs-Sector of SM the Higgs-Fermion coupling is

s 90+ s S00>«<
Ly :_yb'<t7b)L< 0 >bR _yt°(t7b)L( )tR + h.c.

© —p~

Higgs-dynamics dominated by coupling to heaviest fermions
— Consider only the heavieste. thetop-bottom doublet
andno gauge fieldshere.



In pure Higgs-Sector of SM the Higgs-Fermion coupling is

0

s 90+ s S00>«<
Ly = —yp - (tab)L< >bR — Yt - (tab)L( )tR + h.c.
—

Higgs-dynamics dominated by coupling to heaviest fermions
— Consider only the heavieste. thetop-bottom doublet
andno gauge fieldshere.

Requirement of chirally invariant lattice fermion

= Use Neuberger'sverlap fermions.




Equivalent notation by rewriting complex Higgs doublet®i x 2 matrix ¢:

Ly =y - (£,b) [P+ diag (1, @> ¢' Py + P_¢ diag (1, %) p} (t>
Yt Jt b

|dea [LUscher]: Replace projectaFs. on righthanded side with modified
projectorsPy. based on Neuberger overlap operafdf?):

1 N
Pi:§(1i75), Py =

N

N A a ov
(1+45), A5 =’Y5<1— ;D( )>
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Yt Jt b

|dea [LUscher]: Replace projectaFs. on righthanded side with modified
projectorsPy. based on Neuberger overlap operafdf?):

1 N
Pi:§(1i75), Py =

N

N A a ov
(1+45), A5 =’Y5<1— ;D( )>

Result is a chirally invariant lattice Higgs-Yukawa coungli

/
P, diag (1, @> ot + P_¢ diag (1, %ﬂ (1 _ iDW)) ( )
Yt Yt 2p b

\ 7

B

LY = Yt - ({, B)




Contents of model:
— One 4-component, realiggs field® (= complex doublet in SM),

— N; (mass-degeneratetdrmion generationg(?) = (28 )

N
7z = /ch lj[fl [DW) DW')] exp (—SF — Sa)

Ny

spo= 3 90 {D«w) vy B (1 _ ipwv)H 0o
i—1 2p
So = =k O [@upst+ @ p] + Y 0les 42D (@]e, - 1)2
T, x x

Four-dimensional space-time.
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Exact globalSU (2);, x SU(2)g symmetry withQ);, Qr € SU(2)

b — QP+ QrPrp 1 — PO + g P_Qf,
6 — QreQ,  oT — QL6T0f




Fory, = y; spectrum of fermionic matrix
M =D 4y, .B (1 _ %p(fM)

IS complex conjugate, since
T IMT = M*, withT = 92757

Thus,det (M) € IR, however, negativdet (M) not excluded.
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To acces®dd N, usePHMC-algorithm

Determine phase structure:
— Locate symmetric{y) = 0) and broken (v) # 0) phases.

Strategy for finding cutoff-dependent Higgs mass bouﬂiﬁ’low(A):

— Fix physical scale and cutoff by phenomenological value
(v.) = 246 GeV.

— Simulate model close to phase transit]
In broken phasat several values of.

— T.u.ne Yukawa coupling parametgiby 4 syM BROKEN
fixing top quark massn,, = 175GeV. ["N| ) — ¢ (v) £ 0

— Considemwveakquartic couplings\ for
lower Higgs mass bounds.

— Considerstrongguartic couplings\ for
upper Higgs mass bounds.
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_ _ . _ )
Fix physical scale by: 246 GeV = TZea

ObtainZ¢ from Goldstone propagatdi;(p?), p: lattice momenta
Obtainmyg, Zy from Higgs propagator
p? + m%

ZH

Gy (p*) =

0.8

Higgs propagator o243 x 32-lattice, \y = 0, yp = 0.711
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Compare Higgs mass from Higgs propagatgl ™ = (43.1 £ 0.5) GeV
to mass from exponential decay of Higgs time-slice coroelat

Check adjustment of Yukawa coupling constant by compatipg, to its
phenomenological valugrb GeV

243 % 32, \g = 0, yo = 0.711

Higgs time-slice correlator Effective top masses
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At what coupling), is Higgs mass minimal? Two competing effects:
1) From PT:  dm3; o (Ao — y3) - A?

= Higgs massn gy increasesvith increasing\,

2) Phase transition moves to largefsmallermg) as\g increases

= Higgs massn gy decreasewith increasing\, (when holdingA const.)

123 x 32, yo = 0.711, A ~ 400 GeV
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The squared mass shiftém?, = m% —mi can be compared to
expected behaviour derived from PT:

dmir /A% oc Ng — y

Corresponding calculations in lattice-PT in progress tmjgare prefactors.

123 x 32, yo = 0.711, A ~ 400 GeV
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Repeat simulation at various cutoffs.

Check finite volume effects by comparing different latticees.
— DemandA > 2 - my,, ~ 350 GeV to avoid cutoff-effects.
— Stop increasing\ when finite volume effects become strong.
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Allow for y; # v, for moderate mass splittingg /y; to avoid strong finite
volume effects

Physical situation ig; /y; = 0.024 — not reachable with our resources

123 x 32, yo = 0.711, v /y, = 0.15, A ~ 400 GeV
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What is influence on Higgs mass? Again two competing effects:

1) From PT:  dm3; o (Ao — y3) - A?

= Higgs massny increasewith decreasing /y:

2) Phase transition moves to large(smallermg) asy,/y; decreases

= Higgs massny decreasewith decreasingy, /y; (when holdingA const.)

Compare behaviour of squared mass shif; with expectation from PT

123 x 32, yo = 0.711, £ = 0.15, A ~ 400 GeV
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At what quartic coupling\y is Higgs massn gy maximal?
— Check thatn g rises monotonously with increasing.

Conclude: Upper Higgs mass bounds can be computggl at cc.

mpy [GeV|

123 x 32, yo = 0.711, A ~ 1500 GeV
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Check finite volume effects by comparing different latticaes.
— DemandA > 2 - my ~ 1300 GeV to avoid cutoff-effects.
— Stop increasing\ when finite volume effects become strong.
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Cutoff-dependent lower Higgs mass boumdg® have been presented.

Dependence af:}9% on )\, volume, cutoffA, and top-bottom mass-splitting
has been investigated.

Preliminary results for upper mass bounds have been shown.

Larger lattices needed to control finite volume effects angia to larger
cutoffs A.

Studying the decay properties of the Higgs{ 2 Goldstones) will become
possible on 822 x 64 lattice. This aim seems to be reachable with the

available resources.
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