Higgs mass bounds from a chirally invariant Higgs-Yukawa model with overlap fermions

Lattice Conference 2008 Williamsburg, 18-July 08

Philipp Gerhold^{ac} Karl Jansen^b Jim Kallarackal^a ^aHumboldt-Universität, Berlin

^bDESY, Zeuthen

^cDeutsche Telekom Stiftung, Bonn

Deutsche Telekom **T** - **Stiftung**

Organization of the talk

- 1. Introduction and motivation
- 2. A chirally invariant $SU(2)_L \times SU(2)_R$ HY-model
- 3. Conceptual considerations
 - \rightarrow Sign-problem? Simulation strategy
- 4. Results for lower Higgs mass bounds
 - \rightarrow Dependence on cutoff, finite volume, top/bottom mass-splitting
- 5. Results for upper Higgs mass bounds (Preliminary)
 - \rightarrow Dependence on cutoff, finite volume
- 6. Outlook

1. Introduction and motivation

- LHC will explore Higgs-Sector.
 - \rightarrow Interest in theoretical predictions on Higgs properties.
- Due to triviality of Higgs-Sector, cutoff Λ cannot be removed. \rightarrow Only cutoff-dependent Higgs mass bounds $m_H^{up}(\Lambda)$, $m_H^{low}(\Lambda)$.
- With requirement of minimal value for Λ (e.g. by experiment) cutoff-dependent bounds translate into absolute Higgs mass bounds.
- Absolute and Λ -dependent Higgs mass bounds are important for...
 - 1. narrowing the possible energy range, where to expect the Higgs.
 - 2. determining the energy scale, where new physics sets in, once the Higgs is actually discovered at the LHC.

- Higgs mass bounds have been derived from perturbation theory.
 - \rightarrow Upper bound: Landau pole
 - \rightarrow Lower bound: Vacuum instability

- Problem: Validity of $m_H^{up}(\Lambda)$ doubtful, because perturbation theory used at large λ .
- Problem: Validity of m^{low}_H(Λ) doubtful, because vacuum instability only relict of perturbation theory. [Kuti, Holland]

- Problem: Validity of $m_H^{up}(\Lambda)$ doubtful, because perturbation theory used at large λ .
- Problem: Validity of m^{low}_H(Λ) doubtful, because vacuum instability only relict of perturbation theory. [Kuti, Holland]
- Solution: Study Higgs-Sector non-perturbatively, e.g. on the lattice.
- Lattice Higgs- and Higgs-Yukawa-models investigated in 1990's, but...
 - \rightarrow ...Higgs-models do not include fermions.
 - \rightarrow ...earlier Higgs-Yukawa models explicitly broke chiral symmetry although indispensable for chiral theories.

- Problem: Validity of $m_H^{up}(\Lambda)$ doubtful, because perturbation theory used at large λ .
- Problem: Validity of m^{low}_H(Λ) doubtful, because vacuum instability only relict of perturbation theory. [Kuti, Holland]
- Solution: Study Higgs-Sector non-perturbatively, e.g. on the lattice.
- Lattice Higgs- and Higgs-Yukawa-models investigated in 1990's, but...
 - \rightarrow ...Higgs-models do not include fermions.
 - \rightarrow ...earlier Higgs-Yukawa models explicitly broke chiral symmetry although indispensable for chiral theories.

Study lattice Higgs-Yukawa model with built-in chiral symmetry.

2. The model

• In pure Higgs-Sector of SM the Higgs-Fermion coupling is

$$L_Y = -y_b \cdot (\bar{t}, \bar{b})_L \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix} b_R - y_t \cdot (\bar{t}, \bar{b})_L \begin{pmatrix} \varphi^{0*} \\ -\varphi^- \end{pmatrix} t_R + h.c.$$

Higgs-dynamics dominated by coupling to heaviest fermions.
 → Consider only the heaviest, *i.e.* the top-bottom doublet, and no gauge fields here.

2. The model

• In pure Higgs-Sector of SM the Higgs-Fermion coupling is

$$L_Y = -y_b \cdot (\bar{t}, \bar{b})_L \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix} b_R - y_t \cdot (\bar{t}, \bar{b})_L \begin{pmatrix} \varphi^{0*} \\ -\varphi^- \end{pmatrix} t_R + h.c.$$

Higgs-dynamics dominated by coupling to heaviest fermions.
 → Consider only the heaviest, *i.e.* the top-bottom doublet, and no gauge fields here.

Requirement of chirally invariant lattice fermions \Rightarrow Use Neuberger's overlap fermions.

Establish chiral symmetry

• Equivalent notation by rewriting complex Higgs doublets into 2×2 matrix ϕ :

$$L_Y = y_t \cdot \left(\bar{t}, \bar{b}\right) \left[P_+ \operatorname{diag}\left(1, \frac{y_b}{y_t}\right) \phi^{\dagger} P_+ + P_- \phi \operatorname{diag}\left(1, \frac{y_b}{y_t}\right) P_- \right] \left(\begin{array}{c} t\\ b \end{array} \right)$$

• Idea [Lüscher]: Replace projectors P_{\pm} on righthanded side with modified projectors \hat{P}_{\pm} based on Neuberger overlap operator $\mathcal{D}^{(ov)}$:

$$P_{\pm} = \frac{1}{2} (1 \pm \gamma_5), \quad \hat{P}_{\pm} = \frac{1}{2} (1 \pm \hat{\gamma}_5), \quad \hat{\gamma}_5 = \gamma_5 \left(1 - \frac{a}{\rho} \mathcal{D}^{(ov)} \right)$$

Establish chiral symmetry

• Equivalent notation by rewriting complex Higgs doublets into 2×2 matrix ϕ :

$$L_Y = y_t \cdot \left(\bar{t}, \bar{b}\right) \left[P_+ \operatorname{diag}\left(1, \frac{y_b}{y_t}\right) \phi^{\dagger} P_+ + P_- \phi \operatorname{diag}\left(1, \frac{y_b}{y_t}\right) P_- \right] \left(\begin{array}{c} t\\ b \end{array} \right)$$

• Idea [Lüscher]: Replace projectors P_{\pm} on righthanded side with modified projectors \hat{P}_{\pm} based on Neuberger overlap operator $\mathcal{D}^{(ov)}$:

$$P_{\pm} = \frac{1}{2} (1 \pm \gamma_5), \quad \hat{P}_{\pm} = \frac{1}{2} (1 \pm \hat{\gamma}_5), \quad \hat{\gamma}_5 = \gamma_5 \left(1 - \frac{a}{\rho} \mathcal{D}^{(ov)} \right)$$

• Result is a chirally invariant lattice Higgs-Yukawa coupling

$$L_Y = y_t \cdot \left(\bar{t}, \bar{b}\right) \underbrace{\left[P_+ \operatorname{diag}\left(1, \frac{y_b}{y_t}\right) \phi^{\dagger} + P_- \phi \operatorname{diag}\left(1, \frac{y_b}{y_t}\right)\right]}_{\mathbf{B}} \left(1 - \frac{1}{2\rho} \mathcal{D}^{(ov)}\right) \begin{pmatrix} t\\b \end{pmatrix}$$

• Contents of model:

 \rightarrow One 4-component, real Higgs field Φ (\equiv complex doublet in SM),

 $\rightarrow N_f$ (mass-degenerated) fermion generations $\psi^{(i)} = \begin{pmatrix} t^{(i)} \\ b^{(i)} \end{pmatrix}$:

$$Z = \int D\Phi \prod_{i=1}^{N_f} \left[D\psi^{(i)} D\bar{\psi}^{(i)} \right] \exp\left(-S_F - S_\Phi\right)$$

$$S_F = \sum_{i=1}^{N_f} \bar{\psi}^{(i)} \left[\mathcal{D}^{(ov)} + y_t \cdot B\left(1 - \frac{1}{2\rho}\mathcal{D}^{(ov)}\right) \right] \psi^{(i)}$$

$$S_\Phi = -\kappa \sum_{x,\mu} \Phi_x^{\dagger} \left[\Phi_{x+\hat{\mu}} + \Phi_{x-\hat{\mu}} \right] + \sum_x \Phi_x^{\dagger} \Phi_x + \lambda \sum_x \left(\Phi_x^{\dagger} \Phi_x - 1 \right)^2$$

• Four-dimensional space-time.

- Contents of model:
 - \rightarrow One 4-component, real Higgs field Φ (\equiv complex doublet in SM),
 - $\rightarrow N_f$ (mass-degenerated) fermion generations $\psi^{(i)} = \begin{pmatrix} t^{(i)} \\ b^{(i)} \end{pmatrix}$:

$$Z = \int D\Phi \prod_{i=1}^{N_f} \left[D\psi^{(i)} D\bar{\psi}^{(i)} \right] \exp\left(-S_F - S_\Phi\right)$$

$$S_F = \sum_{i=1}^{N_f} \bar{\psi}^{(i)} \left[\mathcal{D}^{(ov)} + y_t \cdot B\left(1 - \frac{1}{2\rho}\mathcal{D}^{(ov)}\right) \right] \psi^{(i)}$$

$$S_\Phi = -\kappa \sum_{x,\mu} \Phi_x^{\dagger} \left[\Phi_{x+\hat{\mu}} + \Phi_{x-\hat{\mu}} \right] + \sum_x \Phi_x^{\dagger} \Phi_x + \lambda \sum_x \left(\Phi_x^{\dagger} \Phi_x - 1 \right)^2$$

- Four-dimensional space-time.
- Exact global $SU(2)_L \times SU(2)_R$ symmetry with $\Omega_L, \Omega_R \in SU(2)$

$$\begin{split} \psi &\to \Omega_L \hat{P}_- \psi + \Omega_R \hat{P}_+ \psi \qquad \bar{\psi} \to \bar{\psi} P_+ \Omega_L^{\dagger} + \bar{\psi} P_- \Omega_R^{\dagger} \\ \phi &\to \Omega_R \phi \Omega_L^{\dagger} \qquad \phi^{\dagger} \to \Omega_L \phi^{\dagger} \Omega_R^{\dagger} \end{split}$$

3.1 Sign - Problem ?

• For $y_b = y_t$ spectrum of fermionic matrix

$$\mathcal{M} = \mathcal{D}^{(ov)} + y_t \cdot B\left(1 - \frac{1}{2\rho}\mathcal{D}^{(ov)}\right)$$

is complex conjugate, since

$$T^{-1}\mathcal{M}T = \mathcal{M}^*, \quad \text{with } T = \gamma_0 \gamma_2 \gamma_5 \tau_2$$

• Thus, $\det(\mathcal{M}) \in \mathbb{R}$, however, negative $\det(\mathcal{M})$ not excluded.

3.1 Sign - Problem ?

• For $y_b = y_t$ spectrum of fermionic matrix

$$\mathcal{M} = \mathcal{D}^{(ov)} + y_t \cdot B\left(1 - \frac{1}{2\rho}\mathcal{D}^{(ov)}\right)$$

is complex conjugate, since

$$T^{-1}\mathcal{M}T = \mathcal{M}^*, \quad \text{with } T = \gamma_0 \gamma_2 \gamma_5 \tau_2$$

• Thus, $det(\mathcal{M}) \in \mathbb{R}$, however, negative $det(\mathcal{M})$ not excluded.

3.2 Simulation strategy

- To access odd N_f use PHMC-algorithm.
- Determine phase structure:
 - \rightarrow Locate symmetric ($\langle v \rangle = 0$) and broken ($\langle v \rangle \neq 0$) phases.
- Strategy for finding cutoff-dependent Higgs mass bound $m_H^{up,low}(\Lambda)$: \rightarrow Fix physical scale and cutoff Λ by phenomenological value

 $\langle v_r \rangle = 246 \,\mathrm{GeV}.$

- \rightarrow Simulate model close to phase transition in broken phase at several values of Λ .
- \rightarrow Tune Yukawa coupling parameter y by fixing top quark mass $m_{top} = 175 \,\text{GeV}$.
- \rightarrow Consider weak quartic couplings λ for lower Higgs mass bounds.
- \rightarrow Consider strong quartic couplings λ for upper Higgs mass bounds.

3.2 Simulation strategy

- To access odd N_f use PHMC-algorithm.
- Determine phase structure:
 - \rightarrow Locate symmetric ($\langle v \rangle = 0$) and broken ($\langle v \rangle \neq 0$) phases.
- Strategy for finding cutoff-dependent Higgs mass bound $m_H^{up,low}(\Lambda)$: \rightarrow Fix physical scale and cutoff Λ by phenomenological value $\langle v_r \rangle = 246 \,\text{GeV}.$
 - \rightarrow Simulate model close to phase transition in broken phase at several values of Λ .
 - \rightarrow Tune Yukawa coupling parameter y by fixing top quark mass $m_{top} = 175 \,\text{GeV}$.
 - \rightarrow Consider weak quartic couplings λ for lower Higgs mass bounds.
 - \rightarrow Consider strong quartic couplings λ for upper Higgs mass bounds.

4. Results for lower mass bound

- Fix physical scale by: $246 \text{ GeV} = \frac{\langle v \rangle}{\sqrt{Z_G} \cdot a}$
- Obtain Z_G from Goldstone propagator $G_G(\hat{p}^2)$, \hat{p} : lattice momenta
- Obtain m_H , Z_H from Higgs propagator

$$G_H^{-1}(\hat{p}^2) = \frac{\hat{p}^2 + m_H^2}{Z_H}$$

- Compare Higgs mass from Higgs propagator $m_H^{prop} = (43.1 \pm 0.5) \text{ GeV}$ to mass from exponential decay of Higgs time-slice correlator
- Check adjustment of Yukawa coupling constant by comparing m_{top} to its phenomenological value 175 GeV

4.1 Dependence on quartic coup.

- At what coupling λ_0 is Higgs mass minimal? \rightarrow Two competing effects: 1) From PT: $\delta m_H^2 \propto (\lambda_0 - y_0^2) \cdot \Lambda^2$
 - \Rightarrow Higgs mass m_H increases with increasing λ_0
 - 2) Phase transition moves to larger κ (smaller m_0) as λ_0 increases
 - \Rightarrow Higgs mass m_H decreases with increasing λ_0 (when holding Λ const.)

• The squared mass shift $\delta m_H^2 = m_H^2 - m_0^2$ can be compared to expected behaviour derived from PT:

$$\delta m_H^2 / \Lambda^2 \propto \lambda_0 - y_0^2$$

• Corresponding calculations in lattice-PT in progress to compare prefactors.

4.2 Cutoff - dependence

- Repeat simulation at various cutoffs.
- Check finite volume effects by comparing different lattice sizes.
 - \rightarrow Demand $\Lambda \geq 2 \cdot m_{top} \approx 350 \,\text{GeV}$ to avoid cutoff-effects.
 - \rightarrow Stop increasing Λ when finite volume effects become strong.

4.3 Dep. on top-bottom splitting

- Allow for $y_t \neq y_b$ for moderate mass splittings y_b/y_t to avoid strong finite volume effects
- Physical situation is $y_b/y_t = 0.024 \rightarrow$ not reachable with our resources

- What is influence on Higgs mass? \rightarrow Again two competing effects: 1) From PT: $\delta m_H^2 \propto (\lambda_0 - y_0^2) \cdot \Lambda^2$
 - \Rightarrow Higgs mass m_H increases with decreasing y_b/y_t
 - 2) Phase transition moves to larger κ (smaller m_0) as y_b/y_t decreases
 - \Rightarrow Higgs mass m_H decreases with decreasing y_b/y_t (when holding Λ const.)
- Compare behaviour of squared mass shift δm_H^2 with expectation from PT

5. Results for upper bound

- At what quartic coupling λ_0 is Higgs mass m_H maximal? \rightarrow Check that m_H rises monotonously with increasing λ_0 .
- Conclude: Upper Higgs mass bounds can be computed at $\lambda_0 = \infty$.

5.1 Cutoff dependence

- Check finite volume effects by comparing different lattice sizes.
 - \rightarrow Demand $\Lambda \geq 2 \cdot m_H \approx 1300 \,\text{GeV}$ to avoid cutoff-effects.
 - \rightarrow Stop increasing Λ when finite volume effects become strong.

5. Summary and Outlook

- Cutoff-dependent lower Higgs mass bounds m_H^{low} have been presented.
- Dependence of m_H^{low} on λ_0 , volume, cutoff Λ , and top-bottom mass-splitting has been investigated.
- Preliminary results for upper mass bounds have been shown.
- Larger lattices needed to control finite volume effects and to go to larger cutoffs Λ .
- Studying the decay properties of the Higgs (h → 2 Goldstones) will become possible on a 32³ × 64 lattice. This aim seems to be reachable with the available resources.