The curvature of the critical surface $\left(m_{u, d}, m_{s}\right)^{\text {crit }}(\mu)$, on finer and bigger lattices

> Philippe de Forcrand ETH Zürich and CERN
in collaboration with Owe Philipsen (Münster)

EHH

The issue

Only derivatives at $\mu=0$ are reliable: $\quad \frac{m_{c}(\mu)}{m_{c}(0)}=1+\sum_{k=1} \mathbf{c}_{\mathbf{k}}\left(\frac{\mu}{\pi T}\right)^{2 k}$

The issue

Real world Heavy quarks
\qquad

Only derivatives at $\mu=0$ are reliable: $\quad \frac{m_{c}(\mu)}{m_{c}(0)}=1+\sum_{k=1} \mathrm{c}_{\mathrm{k}}\left(\frac{\mu}{\pi T}\right)^{2 k}$

This year:

- $N_{t}=4, N_{f}=3 \quad\left(m_{s}=m_{u, d}\right): 8^{3} \rightarrow 12^{3}$
higher-order terms
- $N_{t}=4, N_{f}=2+1 \quad\left(m_{s}=m_{s}^{\text {physical }}\right): 16^{3}$
- $N_{t}=6, N_{t}=3: 18^{3}$

The two methods

Measure $B_{4}(\bar{\psi} \psi) \equiv \frac{\left\langle(\delta \bar{\psi} \psi)^{4}\right\rangle}{\left\langle(\delta \bar{\psi} \psi)^{2}\right\rangle^{2}}= \begin{cases}1.604 \text { 3d Ising } \\ 1 & \text { first-order for } V \rightarrow \infty \\ 3 & \text { crossover }\end{cases}$

$$
\frac{d a m^{c}}{d(\mu \mu)^{2}}=-\frac{\partial B_{4}}{\partial(a \mu)^{2}} / \frac{\partial B_{4}}{\partial a m}, \text { hard / easy }
$$

1. Finite- μ : MC at $\mu=i \mu_{i}$, fit $B_{4}\left(\mu_{i}\right)$ with truncated Taylor series in μ^{2} truncation error?
2. Derivative: MC at $\mu=0$, reweight to small $\mu=i \mu_{i}$, measure $\frac{\Delta B_{4}}{\Delta \mu^{2}}$ fluctuations cancel in ΔB_{4}

The two methods

Measure $B_{4}(\bar{\psi} \psi) \equiv \frac{\left\langle(\delta \bar{\psi} \psi)^{4}\right\rangle}{\left\langle(\delta \bar{\psi} \psi)^{2}\right\rangle^{2}}=\left\{\begin{array}{ll}1.604 \text { 3d Ising } \\ 1 & \text { first - order } \\ 3 & \text { crossover }\end{array}\right.$ for $V \rightarrow \infty$

$$
\frac{d a m^{c}}{d(\mu \mu)^{2}}=-\frac{\partial B_{4}}{\partial(a \mu)^{2}} / \frac{\partial B_{4}}{\partial a m}, \text { hard / easy }
$$

1. Finite- μ : MC at $\mu=i \mu_{i}$, fit $B_{4}\left(\mu_{i}\right)$ with truncated Taylor series in μ^{2} truncation error?
2. Derivative: MC at $\mu=0$, reweight to small $\mu=i \mu_{i}$, measure $\frac{\Delta B_{4}}{\Delta \mu^{2}}$ fluctuations cancel in ΔB_{4}

$N_{t}=4, N_{f}=3$, larger volume

$$
\frac{d a m^{c}}{d(a \mu)^{2}}=-\frac{\partial B_{4}}{\partial(a \mu)^{2}} / \frac{\partial B_{4}}{\partial a m} ; \quad \text { scaling } \rightarrow \text { each factor } \propto L^{1 / v}, \quad v=0.63
$$

Compare $8^{3} \times 4$ and $12^{3} \times 4$ (Derivative method):

- Consistency of leading and subleading terms
- Subleading term $\sim\left(\frac{\mu}{\pi T}\right)^{4}$ weakens curvature for imaginary μ
\Longrightarrow reinforces exotic scenario for real μ

$N_{t}=4, N_{f}=3$: combining the two methods

Methods 1 and 2 cover different ranges of $\mu_{i} \rightarrow$ combine them
$\Delta B 4 / \Delta \mu_{i}{ }^{2}$

$N_{t}=4, N_{f}=3$: combining the two methods

Methods 1 and 2 cover different ranges of $\mu_{i} \rightarrow$ combine them
$\Delta B 4 / \Delta \mu_{i}{ }^{2}$

$N_{t}=4, N_{f}=3$: combining the two methods

Methods 1 and 2 cover different ranges of $\mu_{i} \rightarrow$ combine them
$\Delta B 4 / \Delta \mu_{i}{ }^{2}$

$N_{t}=4, N_{f}=3$: combining the two methods

Methods 1 and 2 cover different ranges of $\mu_{i} \rightarrow$ combine them

$$
\Delta \mathrm{B} 4 / \Delta \mu_{\mathrm{i}}^{2}
$$

$\frac{B_{4}\left(\mu_{i}\right)-B_{4}(0)}{\mu_{i}^{2}}=\underbrace{b_{1}}_{<0}+\underbrace{b_{2}}_{>0} \mu_{i}^{2}+\underbrace{b_{3}}_{<0} \mu_{i}^{4}+\underbrace{b_{4}}_{>0} \mu_{i}^{6}$
Real $\mu: \quad B_{4}(\mu)=B_{4}(0)+\underbrace{\left(-b_{1}\right)}_{>0} \mu^{2}+\underbrace{\left(+b_{2}\right)}_{>0} \mu^{4}+\underbrace{\left(-b_{3}\right)}_{>0} \mu^{6}+\underbrace{\left(+b_{4}\right)}_{>0} \mu^{8}$
B_{4} increases with $\mu \rightarrow$ crossover: all terms reinforce exotic scenario!

$N_{t}=4, N_{f}=2+1$: moving along the critical line

- $16^{3} \times 4, a m_{s}=0.25, a m_{u, d}=0.005$, lighter than in nature 350k trajectories, 5 weeks of Grid computing
- $b_{1}=-66(41)\left(\mu^{2}\right.$ fit $) \rightarrow \partial \mathrm{am}^{c} / \partial\left(a \mu^{2}\right)=-0.64(39)$
[or $b_{1}=-71(75)\left(\mu^{2}+\mu^{4}\right.$ fit)]
- $c_{1}=-80(50)$, ie. $\frac{m_{c}(\mu)}{m_{c}(0)}=1-80(50)\left(\frac{\mu}{\pi T}\right)^{2}$ not conclusive yet

LQCD on the Computing Grid

- 725k trajectories (2 quark masses) in 2 months $\rightarrow 115$ CPU years
- on average 700 CPUs active at all times
- 330k files = 3 TB of data transferred
- computing support provided by CERN IT/GS: thanks a lot!

- calculations on EGEE Grid
- resources provided by CERN, CYFRONET (Poland), CSCS (Switzerland), NIKHEF (Holland) + 10 more across Europe

$N_{t}=6, N_{f}=3$: towards the continuum limit

1. $\mu=0$: re-tune the quark mass for 2nd-order transition at $T=T_{c}$

$$
\rightarrow \text { At } T=0, \frac{m_{\pi}}{T_{c}}=0.954(12) \text { instead of } 1.680(4)\left(N_{t}=4\right)
$$

cf. Endrodi, Fodor et al., arXiv:0710.0998

Real world
avy quarks

$N_{t}=6, N_{f}=3$: towards the continuum limit

2. Measure $\frac{\partial B_{4}}{\partial(a m)}$ (easy) and $b_{1} \equiv \frac{\partial B_{4}}{\partial(a \mu)^{2}}$ (hard)

- $18^{3} \times 6, a m=0.003, m_{\pi}=0.95 T_{c} \sim 170 \mathrm{MeV}$

120k trajectories, 6 months of SX-8

- $b_{1}=-58(49)\left(\mu^{2} \mathrm{fit}\right) \rightarrow c_{1}=-28(23)$, ie. $\frac{m_{c}(\mu)}{m_{c}(0)}=1-28(23)\left(\frac{\mu}{\pi T}\right)^{2}$
[or $b_{1}=-88(75)\left(\mu^{2}+\mu^{4}\right.$ fit)]
- Assume $c_{1}=+18$, ie. 2 sigmas away; then $\frac{\mu_{E}}{T_{E}}=1 \Rightarrow \frac{m_{c}\left(\mu_{E}\right)}{m_{c}(0)} \sim 3$, insufficient to reach physical point

Conclusions

- $N_{t}=4$: - exotic scenario established for $N_{f}=3$
- reinforced by subleading terms

$$
\frac{m_{c}(\mu)}{m_{c}(0)}=1-3.3(5)\left(\frac{\mu}{\pi T}\right)^{2}-20(8)\left(\frac{\mu}{\pi T}\right)^{4}-\ldots
$$

- no qualitative change so far for $N_{f}=2+1$ (in progress)
- $N_{t}=6$: - sign undetermined, but curvature not large \rightarrow already disfavors standard scenario
- more statistics needed...
- to be continued...

