# The curvature of the critical surface $(m_{u,d}, m_s)^{\rm crit}(\mu)$ , on finer and bigger lattices

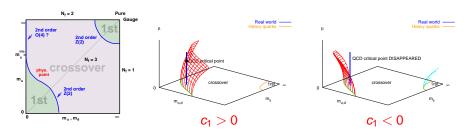
Philippe de Forcrand ETH Zürich and CERN

in collaboration with Owe Philipsen (Münster)



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

#### The issue

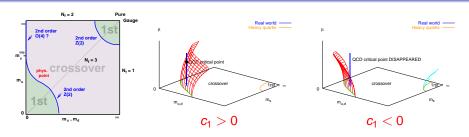


Only derivatives at  $\mu = 0$  are reliable:

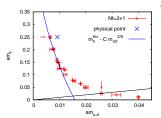
$$rac{m_c(\mu)}{m_c(0)} = 1 + \sum_{k=1} \mathbf{c_k} \left(rac{\mu}{\pi T}
ight)^{2k}$$

LAT08, July 2008 Curvature

#### The issue



Only derivatives at 
$$\mu = 0$$
 are reliable:  $\frac{m_c(\mu)}{m_c(0)} = 1 + \sum_{k=1} \mathbf{c_k} \left(\frac{\mu}{\pi T}\right)^{2k}$ 



This year:

• 
$$N_t = 4$$
,  $N_f = 3$   $(m_s = m_{u,d})$ :  $8^3 \to 12^3$ 

higher-order terms

• 
$$N_t = 4$$
,  $N_f = 2 + 1$   $(m_s = m_s^{\text{physical}})$ :  $16^3$ 

• 
$$N_t = 6$$
,  $N_f = 3$ :  $18^3$ 

Ph. de Forcrand

LAT08, July 2008

Curvature

#### The two methods

Measure 
$$B_4(\bar{\psi}\psi) \equiv \frac{\langle (\delta\bar{\psi}\psi)^4 \rangle}{\langle (\delta\bar{\psi}\psi)^2 \rangle^2} = \begin{cases} 1.604 & \text{3d Ising} \\ 1 & \text{first-order} & \text{for } V \to \infty \\ 3 & \text{crossover} \end{cases}$$

$$\frac{d \, am^c}{d(au)^2} = -\frac{\partial B_4}{\partial (au)^2} / \frac{\partial B_4}{\partial am}, \text{ hard / easy}$$

- **1. Finite-\mu:** MC at  $\mu = i\mu_i$ , fit  $B_4(\mu_i)$  with truncated Taylor series in  $\mu^2$ truncation error?
- **2.** Derivative: MC at  $\mu = 0$ , reweight to small  $\mu = i\mu_i$ , measure  $\frac{\Delta B_4}{\Delta u^2}$ fluctuations cancel in  $\Delta B_4$

Measure 
$$B_4(\bar{\psi}\psi) \equiv \frac{\langle (\delta\bar{\psi}\psi)^4 \rangle}{\langle (\delta\bar{\psi}\psi)^2 \rangle^2} = \begin{cases} 1.604 & \text{3d Ising} \\ 1 & \text{first-order} \\ 3 & \text{crossover} \end{cases}$$

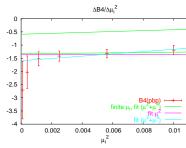
$$\frac{d \, am^c}{d(av)^2} = -\frac{\partial B_4}{\partial (av)^2} / \frac{\partial B_4}{\partial am}, \text{ hard / easy}$$

- **1. Finite-\mu:** MC at  $\mu = i\mu_i$ , fit  $B_4(\mu_i)$  with truncated Taylor series in  $\mu^2$ truncation error?
- **2. Derivative:** MC at  $\mu = 0$ , reweight to small  $\mu = i\mu_i$ , measure  $\frac{\Delta B_4}{\Delta u^2}$ fluctuations cancel in  $\Delta B_4$

Comparison  $8^3 \times 4$ ,  $N_f = 3$ :

- consistent value for  $\frac{\partial B_4}{\partial (au)^2}$
- also for NLO  $\frac{\partial^2 B_4}{\partial (au)^4}$
- Derivative method superior

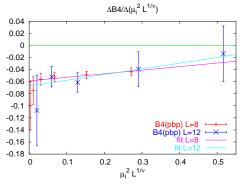
5 million traj., 2 weeks Grid computing



## $N_t = 4$ , $N_f = 3$ , larger volume

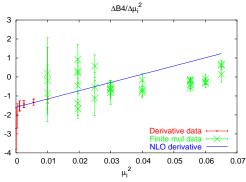
$$\frac{d \ am^c}{d(a\mu)^2} = -\frac{\partial B_4}{\partial (a\mu)^2} / \frac{\partial B_4}{\partial am}; \quad \text{scaling} \to \text{each factor} \propto \ L^{1/\nu}, \quad \nu = 0.63$$

Compare  $8^3 \times 4$  and  $12^3 \times 4$  (Derivative method):



- Consistency of leading and subleading terms
- Subleading term  $\sim \left(\frac{\mu}{\pi T}\right)^4$  weakens curvature for imaginary  $\mu$   $\Longrightarrow$  reinforces exotic scenario for real  $\mu$

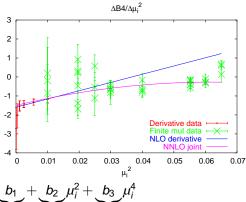
Methods 1 and 2 cover different ranges of  $\mu_i \rightarrow \text{combine them}$ 



$$\frac{B_4(\mu_i) - B_4(0)}{\mu_i^2} = \underbrace{b_1}_{<0} + \underbrace{b_2}_{>0} \mu$$

LAT08, July 2008 Curvature

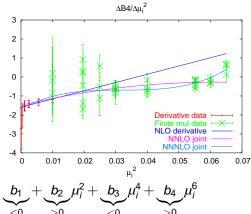
#### Methods 1 and 2 cover different ranges of $\mu_i \rightarrow \text{combine them}$



$$\frac{B_4(\mu_i) - B_4(0)}{\mu_i^2} = \underbrace{b_1}_{<0} + \underbrace{b_2}_{>0} \mu_i^2 + \underbrace{b_3}_{<0} \mu_i^2$$

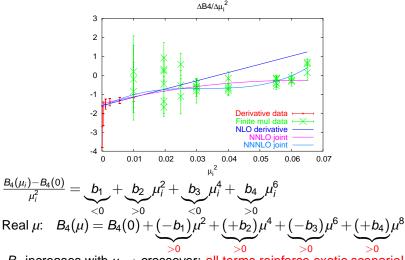
LAT08, July 2008 Curvature

Methods 1 and 2 cover different ranges of  $\mu_i \rightarrow \text{combine them}$ 



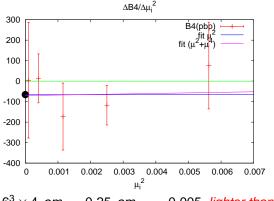
 $B_4(\mu_i)-B_4(0)$ 

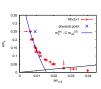
Methods 1 and 2 cover different ranges of  $\mu_i \rightarrow \text{combine them}$ 



 $B_4$  increases with  $\mu \rightarrow$  crossover: all terms reinforce exotic scenario!

#### $N_t = 4, N_f = 2 + 1$ : moving along the critical line

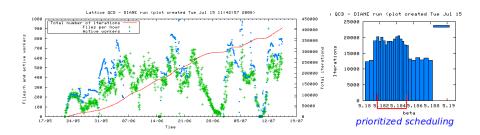




- $16^3 \times 4$ ,  $am_s = 0.25$ ,  $am_{u,d} = 0.005$ , lighter than in nature 350k trajectories, 5 weeks of Grid computing
- $b_1 = -66(41) \ (\mu^2 \text{ fit}) \rightarrow \partial am^c / \partial (a\mu^2) = -0.64(39)$ [or  $b_1 = -71(75) \ (\mu^2 + \mu^4 \text{ fit})$ ]
  - $c_1 = -80(50)$ , ie.  $\frac{m_c(\mu)}{m_c(0)} = 1 80(50) \left(\frac{\mu}{\pi T}\right)^2$  not conclusive yet

## LQCD on the Computing Grid

- 725k trajectories (2 quark masses) in 2 months → 115 CPU years
- on average 700 CPUs active at all times
- 330k files = 3 TB of data transferred
- computing support provided by CERN IT/GS: thanks a lot!

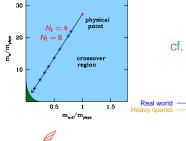


- calculations on EGEE Grid
- resources provided by CERN, CYFRONET (Poland), CSCS (Switzerland), NIKHEF (Holland) + 10 more across Europe

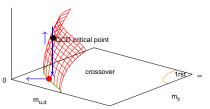
#### $N_t = 6$ , $N_f = 3$ : towards the continuum limit

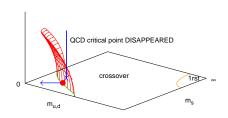
1.  $\mu$  = 0: re-tune the quark mass for 2nd-order transition at T =  $T_c$ 

$$\rightarrow$$
 At  $T=0$ ,  $\frac{m_{\pi}}{T_c}=0.954(12)$  instead of 1.680(4) ( $N_t=4$ )



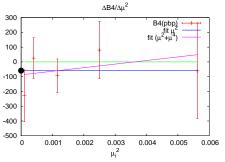
cf. Endrodi, Fodor et al., arXiv:0710.0998





## $N_t = 6$ , $N_f = 3$ : towards the continuum limit

**2**. Measure  $\frac{\partial B_4}{\partial (am)}$  (easy) and  $\frac{\partial B_4}{\partial (au)^2}$  (hard)



- $18^3 \times 6$ , am = 0.003,  $m_{\pi} = 0.95 T_c \sim 170$  MeV 120k trajectories, 6 months of SX-8
- $b_1 = -58(49)$  ( $\mu^2$  fit)  $\rightarrow c_1 = -28(23)$ , ie.  $\frac{m_c(\mu)}{m_c(0)} = 1 28(23) \left(\frac{\mu}{\pi T}\right)^2$  [or  $b_1 = -88(75)$  ( $\mu^2 + \mu^4$  fit)]
- Assume  $c_1=+18$ , ie. 2 sigmas away; then  $\frac{\mu_E}{T_E}=1 \Rightarrow \frac{m_c(\mu_E)}{m_c(0)}\sim 3$ , insufficient to reach physical point

#### Conclusions

- $N_t = 4$ : exotic scenario established for  $N_f = 3$ 
  - reinforced by subleading terms

$$\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(5) \left(\frac{\mu}{\pi T}\right)^2 - 20(8) \left(\frac{\mu}{\pi T}\right)^4 - \dots$$

- no qualitative change so far for  $N_f = 2 + 1$  (in progress)
- N<sub>t</sub> = 6: sign undetermined, but curvature not large

   → already disfavors standard scenario
   - more statistics needed...
- to be continued...