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Wilson loop operator

• Unitary operator for SU(N) gauge theories.

• A probe of the transition from strong coupling to weak coupling.

• Large (area) Wilson loops are non-perturbative and correspond to strong coupling.

• Small (area) Wilson loops are perturbative and correspond to weak coupling.
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Definition of the probe
WN(z, b, L) = 〈det(z −W )〉

• W is the Wilson loop operator.

• z is a complex number.

• N is the number of colors.

• b = 1
g2N

is the lattice gauge coupling.

• L is the linear size of the square loop.

• 〈· · · 〉 is the average over all gauge fields with the standard gauge action.
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Multiplicative matrix model – Janik-Wieczorek
model

WN(z, b, L) = 〈det(z −W )〉

• W =
∏n

i=1 Ui; Uis are the transporters around the individual plaquettes that make up the
loop and n = L2 is equal to the area of the loop.

• Two dimensional gauge theory on an infinite lattice can be gauge fixed so that the only
variables are the individual plaquettes and these will be independently and identically
distributed.

• Set Uj = eiεHj and set P (Uj) = N e−
N
2 Tr H2

j .

• t = ε2n is the dimensionless area which is kept fixed as one takes the continuum limit,
n →∞ and ε → 0.

• The parameters b and L get replaced by one parameter, t in the model.

WN(z, b, L) → QN(z, t)

• Note that N can take on any value.
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Average characteristic polynomial

QN(z, t) =


√

Nτ
2π

∫∞
−∞ dνe−

N
2 τν2 [

z − e−τν−τ
2
]N

SU(N)√
Nt
2π

∫∞
−∞ dνe−

N
2 tν2 [

z − e−tν−τ
2
]N

U(N)

QN(z, t) =


∑N

k=0

(
N

k

)
zN−k(−1)ke−

τk(N−k)
2N SU(N)

∑N
k=0

(
N

k

)
zN−k(−1)ke−

tk(N+1−k)
2N U(N)

τ = t

(
1 +

1

N

)

• Result is exact for the multiplicative matrix model and QCD in two dimensions.

• Both forms are useful in understanding the physics.
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Heat-kernel measure

The result for QN(z, t) is consistent with

P (W, τ )dW =
∑
R

dRχR(W )e−τC2(R)dW

• R denotes the representation.

• dR is the dimension of the representation R.

• C2(R) is the second order Casimir in thr representation R.

QN(z, t) = 〈
N∏

j=1

(z − eiθj)〉 =

N∑
k=0

zN−k(−1)kMk(t)

Mk(t) = 〈
∑

1≤j1<j2<j3....<jk≤N

ei(θj1+θj2+...+θjk
)〉 = 〈χk(W )〉 = dke

−τC2(k) =

(
N

k

)
e−

τk(N−k)
2N
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Zeros of QN (z, t)

We can rewrite QN(z, t) for SU(N) as

ZN(z, t) = QN(z, t)(−1)Ne
(N−1)τ

8 (−z)−
N
2 =

∑
σ1,σ2,...σN=±1

2

eln(−z)
∑

i σie
τ
N

∑
i>j σiσj

• Ferromagnetic interaction for positive τ .

• ln(−z) is a complex external magnetic field.

Conditions for Lee-Yang theorem are fulfilled.

All roots of QN(z, t) lie on the unit circle for SU(N).

This is not the case for U(N).
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Weak coupling vs strong coupling

QN(z, t) =

N∑
k=0

(
N
k

)
zN−k(−1)ke−

t(1+ 1
N )k(N−k)

2N

• Weak coupling; small area; t = 0

QN(z, t) = (z − 1)N

All roots at z = 1 on the unit circle.

• Strong coupling; large area; t = ∞

QN(z, t) = zN + (−1)N

Roots uniformly distributed on the unit circle.

QN(z, t) is analytic in z for all t at finite N . This is not the case as N →∞.

Rajamani Narayanan 8



Williamsburg, July 15

LATTICE 2008

Phase transition in an observable –
Durhuus-Olesen transition

There is a critical area, t = 4, such that the distribution of zeros of Q∞(z, t) on the unit circle
has a gap around z = −1 for t < 4 and has no gap for t > 4.

The integral

QN(z, t) =

√
Nτ

2π

∫ ∞

−∞
dνe−

N
2 τν2 [

z − e−τν−τ
2
]N

is domimated by the saddle point, ν = λ(t, z), given by

λ = λ(t, z) =
1

zet(λ+1
2) − 1

With z = eiθ and w = 2λ + 1, ρ(θ) = − 1
4πRe w gives the distribution of the eigenvalues of W

on the unit circle.

The saddle point equation at z = −1 is

w = tanh
t

4
w

showing that w admits a non-zero solution for t > 4.
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Double scaling limit

t =
4

1 + α√
3N

; z = −e(
4

3N )
3
4ξ

lim
N→∞

(
4N

3

)1
4

(−1)Ne
(N−1)τ

8 (−z)−
N
2 QN(z, t) =

∫ ∞

−∞
due−u4−αu2+ξu ≡ ζ(ξ, α)

Claim

The behavior in the double scaling limit is universal and should be seen in the large N limit of
3D QCD, 4D QCD, 2D PCM ....

The modified Airy function, ζ(ξ, α), is a universal scaling function.
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Large N universality hypothesis

Let C be a closed non-intersecting loop: xµ(s), s ∈ [0, 1].

Let C(m) be a whole family of loops obtained by dialation: xµ(s, m) = 1
mxµ(s),with m > 0.

Let W (m, C(∗)) = W (C(m)) be the family of operators associated with the family of loops
denoted by C(∗) where m labels one member in the family.

Define
ON(y, m, C(∗)) = 〈det(e

y
2 + e−

y
2W (m, C(∗))〉

Then our hypothesis is

lim
N→∞

N (N, b, C(∗))ON

(
y =

(
4

3N 3

)1
4 ξ

a1(C(∗))
, m = mc

[
1 +

α√
3Na2(C(∗))

])
= ζ(ξ, α)
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Numerical test of the universality hypothesis –
3D large N QCD
• Use standard Wilson gauge action

• The lattice coupling b = 1
g2N

has dimensions of length.

• Use square Wilson loops and use the linear length, L, to label C(∗).

• Change b to generate a family of square loops labelled by L.

• Need to keep b > bB = 0.43 to be in the continuum phase.

• Need to keep b < b1 where b1 depends on the lattice size in order to be in the confined
phase.

• Need to use smeared links in the construction of the Wilson loop operator to avoid corner
and perimeter divergences.

• Need to obtain bc(L), a1(L) and a2(L) such that

lim
N→∞

N (b, N)ON

(
y =

(
4

3N 3

)1
4 ξ

a1(L)
, b = bc(L)

[
1 +

α√
3Na2(L)

])
= ζ(ξ, α)
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Numerical test of the universality hypothesis –
3D large N QCD

• Fix N and L.

• Obtain estimates for bc(L, N), a1(L, N) and a2(L, N).

• Check that there is a well defined limit as N →∞.

• Check that bc(L), a1(L) and a2(L) have proper continuum limits as L →∞.
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Binder cumulant

With
ON(y, b) = C0(b, N) + C1(b, N)y2 + C2(b, N)y4 + · · ·

define

Ω(b, N) =
C0(b, N)C2(b, N)

C2
1(b, N)

.

As N →∞, Ω(b,∞) is a step function with

• Strong coupling; b < bc(L); Ω = 1
6.

• Weak coupling; b > bc(L); Ω = 1
2.
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Scaling limit of the multiplicative matrix model
Ω(0)=0.364739936
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Extraction of bc(L, N), a2(L, N) and a1(L, N)

We use
Ω(bc(L, N), N) = 0.364739936

to extract bc(L, N).

We use
dΩ(b, N)

dα

∣∣∣∣
α=0

=
1

a2(L, N)
√

3N

dΩ

db

∣∣∣∣
b=bc(L,N)

= 0.0464609668

to extract a2(L, N).

We use √
4

3N 3

1

a2
1(L, N)

C1(bc(L, N), N)

C0(bc(L, N), N)
= 0.16899456

to extract a1(L, N).
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Two dimensional SU(N) X SU(N) principal chiral
model

• Similar to four dimensional SU(N) gauge theory in many respects.

•
S =

N

T

∫
d2xTr∂µg(x)∂µg

†(x)

g(x) ∈ SU(N).

• The global symmetry group SU(N)L× SU(N)R reduces down to a single SU(N) “diagonal
subgroup” if we make a translation breaking “gauge choice”, g(0) = 1.

• Model is asymptotically free and there are N − 1 particle states with masses

MR = M
sin(Rπ

N )

sin( π
N )

, 1 ≤ R ≤ N − 1.

The states corresponding to the R-th mass are a multiplet transforming as an R component
antisymmetric tensor of the diagonal symmetry group.
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Connection to multiplicative matrix model
• W = g(0)g†(x) plays the role of Wilson loop with the separation x playing the role of area.

• One expects

GR(x) = 〈χR(g(0)g†(x))〉 ∼ CR

(
N

R

)
e−MR|x|

where χR is the trace in the R-antisymmetric representation.

• Comparison with the multiplicative matrix model suggests that M |x| plays the role of the
dimensionless area.

• Numerical measurement of the correlation length using the lattice action

SL = −2Nb
∑
x,µ

<Tr[g(x)g†(x + µ)]

and

ξ2
G =

1

4

∑
x x2G1(x)∑
x G1(x)

yields the following continuum result:

MξG = 0.991(1)
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Setting the scale

• ξG will be used to set the scale and it is well described by

ξG = 0.991

[
e

2−π
4

16π

]
√

E exp
(π

E

)
in the range 11 ≤ ξG ≤ 20 with

E = 1− 1

N
<〈Tr[g(0)g†(1̂)]〉 =

1

8b
+

1

256b2
+

0.000545

b3
− 0.00095

b4
+

0.00043

b5

The above equations will be used to find a b for a given ξ.
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Smeared SU(N) matrices

One needs to smear to defined well defined operators.

• Start with g(x) ≡ g0(x).

• One smearing step takes us from gt(x) to gt+1(x).

• Define Zt+1(x) by:

Zt+1(x) =
∑
±µ

[g†t (x)gt(x + µ)− 1]

• Construct antihermitian traceless SU(N) matrices At+1(x)

At+1(x) = Zt+1(x)− Z†
t+1(x)− 1

N
Tr(Zt+1(x)− Z†t+1(x)) ≡ −A†

t+1(x)

• Set
Lt+1(x) = exp[fAt+1(x)]

• gt+1(x) is defined in terms of Lt+1(x) by:

gt+1(x) = gt(x)Lt+1(x)
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Numerical details

• We need L/ξG > 7 to minimize finite volume effects.

• Since we want 11 ≤ ξG ≤ 20, we chose L = 150.

• We used a combination of Metropolis and over-relaxation at east site x for our updates. The
full SU(N) group was explored.

• 200-250 passes of the whole lattices was sufficient to thermalize starting from g(x) ≡ 1.

• 50 passes were enough to equilibriate if ξG was increased in steps of 1.
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Test of the universality hypothesis

The test of the universality hypothesis proceeds in the same manner as for three D large N
gauge theory.

Given an N and a ξ, we find the the dc the makes the Binder cumulant
Ω(dc, N) = 0.364739936.

We look at dc as a function of ξ for a given N . This gives us the continuum value of dc/ξ for
that N .

We then take the large N limit and it gives us

dc

ξG
|N=∞ = 0.885(3)
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d

c
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c
/ξ =1543/ξ4−26.10/ξ2+0.7682
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critical, continuum

=0.768(2)
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d
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c
 (N) /ξ
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 = − 3.535/N + 0.885

d
c
/ξ

G
 |

N=∞ = 0.885(3)
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