Axial coupling and momentum fraction of the nucleon with twisted mass fermions

Rémi Baron
CEA Saclay

17 July 2008, Lattice 2008

Collaboration

- C. Alexandrou, T. Korzec, G. Koutsou
- V. Drach, P. Harraud, Z. Liu, V. Morenas, J. Carbonell, M. Brinet, P. Guichon, O. Pene
- C. Urbach, D. Renner

Outline

3-point functions

Results

Why?

Long term motivation : compute the nucleon observables with twisted mass

- Form factors (we start with g_{A})
- Parton distributions PDF $(<x>)$
- Generalized parton distributions GPD (nothing yet) Intense experimental program at JLab and CERN

How to compute

Form of the matrix element we are interested in

$$
R=\sum_{\vec{y}, \vec{z}} e^{i \vec{p} \cdot \vec{y}} e^{i \overrightarrow{\beta^{\prime}} \cdot \vec{z}}\langle 0| J_{\gamma}(y) O(z) \bar{J}_{\rho}(0)|0\rangle
$$

$\propto\langle N(p, s)| O(z)\left|N\left(p^{\prime}, s^{\prime}\right)\right\rangle$ if J is a nucleon interpolating field

- Look for a plateau on t_{z} with $t_{y} \gg t_{z} \gg 0$

Generalized source

$$
R=\sum_{\vec{y}, \vec{z}} e^{i \vec{\beta} \cdot \vec{y}} e^{i \overrightarrow{p^{\prime}} \cdot \vec{z}}\langle 0| J_{\gamma}(y) O(z) \bar{J}_{\rho}(0)|0\rangle
$$

- After Wick contraction R has the form :

$$
R=B^{\dagger} \gamma_{5} \wedge S_{u}
$$

- With B solution of Dirac equation $D B=\Sigma_{G}$ where Σ_{G} is a combination of quarks propagators.
- Σ_{G} is called generalized or sequential source
- New inversions are necessary
- To create Σ_{G}
- Fix time of sink (ie $t_{y}, 12$ in our case)
- Fix momentum at sink. Operator momentum inserted when doing contractions
- Choose how to project states

Contractions

- Green arrows : 2 propagators used in sequential source
- Red part : generalized propagator
- Blue part : normal propagator

Just need to combine correctly Dirac, color, and space indices.

Quark disconnected diagrams

- Evaluation of disconnected diagram numerically demanding (all to all propagator)
- Consider only non singlet observables

Renormalization issues

- We will use the RI-MOM scheme to renormalize non-perturbatively the bare quantities
- Z_{44} computed for some quark masses, but not yet extrapolated to chiral limit (Z.Liu, V.Morenas)
- Hypercubic artefacts reduced using arXiv :0705.3523 technique
- Ideally (no mixing) multiplicative renormalization using scheme \mathcal{S} at scale μ

$$
\mathcal{O}^{\mathcal{S}}(\mu)=Z_{\mathcal{S}}^{\mathcal{O}}(\mu) \mathcal{O}_{\text {bare }}
$$

- Some renormalization constants have already been computed by other members of the collaboration ($Z_{A}=0.76(1)$ from arXiv :0710.0975)

g_{A}

- g_{A} is one of the first check point for nucleon structure calculation
- Well known experimentally from neutron beta decay ($\left.g_{A} \simeq 1.269\right)$
- Can be extracted with $O(z)=A_{\mu}^{u-d}=\bar{u} \gamma_{\mu} \gamma_{5} u-\bar{d} \gamma_{\mu} \gamma_{5} d$
- We will need to use chiral perturbation theory, to check for finite size effects, for cutoff effects
$<x>$
- $\langle x\rangle=$ momentum fraction carried by the quarks
- Twist-2 operators

$$
\mathcal{O}^{\left\{\mu_{1} \cdots \mu_{n}\right\}}=\left(\frac{i}{2}\right)^{n-1} G_{f f^{\prime}} \bar{\psi}_{f} \gamma^{\left\{\mu_{1}\right.} \stackrel{\leftrightarrow}{D}^{\mu_{2}} \cdots \overleftrightarrow{D}^{\left.\mu_{n}\right\}} \psi_{f^{\prime}}-\text { traces }
$$

$\{\cdots\}$ means symmetrization on the Lorentz indices.

- In our calculation, we use the operator

$$
\mathcal{O}_{44}(x)=\frac{1}{2} \bar{u}(x)\left[\gamma_{4} \stackrel{\leftrightarrow}{D}_{4}-\frac{1}{3} \sum_{k=1}^{3} \gamma_{k} \stackrel{\leftrightarrow}{D}_{k}\right] u(x)
$$

where $D_{\mu}=\frac{1}{2}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)$.

$<x>$

- Then the bare lowest moment of the quark distribution functions $\langle x\rangle$ is given by

$$
\langle x\rangle=\frac{1}{m_{N}^{2}}\langle N, \overrightarrow{0}| \mathcal{O}_{44}|N, \overrightarrow{0}\rangle=\frac{1}{m_{N}} \frac{C_{44}(t)}{C_{N}\left(t_{y}\right)} \quad\left(0 \ll t \ll t_{y}\right)
$$

Here

$$
\begin{gathered}
C_{44}(t)=\sum_{\vec{y}, \vec{z}}\left\langle J\left(t_{y}, \vec{y}\right) \mathcal{O}_{44}(t, \vec{z}) \bar{J}(0,0)\right\rangle, \\
C_{N}\left(t_{y}\right)=\sum_{\vec{y}}\left\langle J\left(t_{y}, \vec{y}\right) \bar{J}(0,0)\right\rangle
\end{gathered}
$$

and $J(x)$ is the interpolating field for the nucleon.

Outline

3-point functions

Results

Ensembles

$\beta=3.9, a=0.0855(6)$ fm from f_{π}.

$a \mu$	$m_{\pi}(\mathrm{GeV})$	$L^{3} \times T$	$m_{\pi} L$	Nmeas
0.0100	$0.483(1)$	$24^{3} \times 48$	5	173
0.0085	$0.446(1)$	$24^{3} \times 48$	4.7	161
0.0064	$0.389(1)$	$24^{3} \times 48$	4.1	131
0.0040	$0.312(2)$	$24^{3} \times 48$	3.2	392

- APE and Gaussian smearings were used

Vector current

- Preliminary (10 configurations only)

- Close to the value found by the collaboration $\left(Z_{v}=0.6104(2)(3)\right)$
$<x>$

g_{A}

Summary

- First results for g_{A} and $<x>$
- Error bars will be strongly reduced in the near future
- Planned work
- Higher moments of GPDs
- Renormalization for more complicated operators
- Partially twisted boundary conditions for low transfer
- Disconnected diagrams

