Calculation of $B^0 - \overline{B}^0$ Mixing Matrix Elements in 2+1 Lattice QCD

Richard Evans

rtevans@uiuc.edu

Fermilab Lattice and MILC Collaborations

Outline

- *B* mixing experimental status and motivation for calculation
- Simulation Details: actions and parameters
- Correlators and fitting
- Perturbative matching
- Chiral Extrapolations
- Results: For ξ only
- Outlook

Status of Experimental Measurement

- $\Delta M_s = 17.77 \pm 0.10 (\text{stat.}) \pm 0.07 (\text{syst.}) \text{ps}^{-1} (CDF 2006)$
- $\Delta M_d = 0.507 \pm 0.005 p s^{-1} (PDG2007 Average)$ $\sigma_{\Delta m_s}, \sigma_{\Delta m_d} < 1\%$

• $|V_{td}/V_{ts}| = \xi \sqrt{\frac{\Delta m_d}{\Delta m_s} \frac{m_{B_s}}{m_{B_d}}} = 0.2060 \pm 0.0007 (\text{exp.})^{+0.0081}_{-0.0060} (\text{theo.})$ Theoretical error is from $\xi = \frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}} = 1.21^{+0.047}_{-0.035},$ $\sigma_{\xi} \approx 4\%$

• ξ is derived by combining calculations from – f_{B_q} : $n_f = 2 + 1$, HPQCD B_{B_q} : $n_f = 2$, JLQCD (quenched strange)

B Mixing Hadronic Matrix Element

 $\Delta M_q = \frac{G_F^2 M_W^2}{6\pi^2} |V_{tq}^* V_{tb}|^2 \eta_2^B S_0(x_t) M_{B_q}^2 f_{B_q}^2 \hat{B}_{B_q}, q = d, s$ • $x_t = m_t^2 / M_W^2, \eta_2^B$ is a perturbative QCD correction factor and $S_0(x_t)$ is the Inami-Lim function.

• For $|V_{tq}^*V_{tb}|$ we need the hadronic matrix element: $-\langle \bar{B}_q | Q_q^1 | B_q \rangle = \frac{8}{3} M_{B_q} f_{B_q}^2 B_{B_q}$ $\rightarrow Q_q^1 = \bar{b}\gamma_\mu (1 - \gamma_5) q \bar{b}\gamma_\mu (1 - \gamma_5) q.$

•
$$\left|\frac{V_{td}}{V_{ts}}\right| = \frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}\sqrt{\frac{\Delta M_d M_{B_s}}{\Delta M_s M_{B_d}}} = \xi \sqrt{\frac{\Delta m_d}{\Delta m_s}} \frac{m_{B_s}}{m_{B_d}}$$

- ξ has smaller statistical and systematic uncertainties (statistical errors reduced, scale uncertainty reduced etc.) - $|\frac{V_{td}}{V_{ts}}|$ constrains the CKM unitarity triangle (determines the length of one side).

Simulation Details: Configurations and Actions

Particle	Action	Errors
Gluons	MILC	${\cal O}(a^2lpha_s,a^4)$
Light quarks	Asqtad	$\mathcal{O}(a^2 lpha_s, a^4)$
Heavy quarks	Fermilab	$\mathcal{O}(\alpha_s \Lambda_{\rm QCD}/M, (\Lambda_{\rm QCD}/M)^2)$

Details

- Gluons- MILC 2+1 gauge configurations (Symanzik and Tadpole Improved).
- Light quarks- sea quarks: $\{u, d, s\}$ and valence quarks: q.
- Heavy Quark- *b* quark, simulated using clover action with Fermilab Interpretation. Heavy quark "rotated" at source to remove $\mathcal{O}(\Lambda_{\rm QCD}/M)$ errors in Q_q^1 and exponentially smeared at sink to improve ground state overlap.

Simulation Details: Lattice Spacings and Masses Used

- Calculation done on 2 lattice spacings.
 6 light sea quark masses, lightest m_{π,sea} ~ 250 MeV.
 6 light valence quark masses, lightest m_{π,val} ~ 240 MeV.
- 4 time sources each.

am_l/am_s	am_v	$N_{configs}$		
	a=0.12 fm			
005/050	0.005,0.007,0.01,0.02,0.03,0.0415	529		
007/050	0.005,0.007,0.01,0.02,0.03,0.0415	833		
010/050	0.005,0.007,0.01,0.02,0.03,0.0415	580		
020/050	0.005,0.007,0.01,0.02,0.03,0.0415	460		
a=0.09 fm				
0062/031	0.0031,0.0044,0.0062,0.0124,0.0272,0.031	553		
0124/031	0.0031,0.0042,0.0062,0.0124,0.0272,0.031	534		

Correlators Used in Calculation

-Simultaneous fits to two-point and three-point correlator to extract mixing parameters. - Q_1^q location is fixed with \overline{B} and B positions varying—use same propagator for backward and forward moving quarks.

Three-point Correlator:

$$\begin{split} \diamond C_{Q_q^1}(t_1, t_2) &= \sum_{\vec{x_1}, \vec{x_2}} \langle \bar{B_q}(t_1, \vec{x_1}) | Q_q^1(0) | B_q(t_2, \vec{x_2}) \rangle = \\ \sum_{i,j} ((-1)^{t_1+1})^i ((-1)^{t_2+1})^j \frac{Z_i Z_j O_{ij}}{(2E_i)(2E_j)} e^{-E_i t_1 - E_j t_2}, \\ \diamond O_{00} &= \langle \bar{B_q} | Q_q^1 | B_q \rangle = \frac{8}{3} M_{B_q}^2 f_{B_q}^2 B_{B_q}. \end{split}$$

Two-point Correlators:

To extract $f_{B_q} \sqrt{M_{B_q} B_{B_q}}$: $C_{PS}^q(t) = \sum_{\vec{x}} \langle B_q(t, \vec{x}) | \bar{q}(0) \gamma_5 b(0) \rangle = \sum_i ((-1)^{t+1})^i \frac{|Z_i|^2}{2E_i} e^{-E_i t}.$

To extract B_{B_q} : $C^q_{A_4}(t) = \sum_{\vec{x}} \langle B_q(t, \vec{x}) | \bar{q} \gamma_0 \gamma_5 b(0) \rangle = \sum_i ((-1)^{t+1})^i \frac{A_{4i} Z_i}{2E_i} e^{-E_i t},$ $A_{40} = f_{B_q} M_{B_q}.$

Data for $\langle \bar{B}_q | Q_q^1 | B_q \rangle$: $\beta_q = f_{B_q} \sqrt{M_{B_q} B_{B_q}}$

- Sea mass dependence is mild.
- Lattice spacing dependence is obvious but not extreme.
- Statistical errors vary between 2-5%.

Perturbative Matching

Matching coefficient calculation is nearly complete: only preliminary results for the coefficients at present.

- Lattice and continuum matrix elements have different regularizations, must match to obtain physical results.
- Q_q^1 mixes with $Q_q^2 = \overline{b}(1 \gamma_5)s\overline{b}(1 \gamma_5)s$ at one-loop. $\rightarrow \langle \overline{B}_q | Q_q^2 | B_q \rangle$ calculation analogous to $\langle \overline{B}_q | Q_q^1 | B_q \rangle$. Built from same propagators so cheap to calculate.
- $\langle \bar{B}_q | Q_q^1 | B_q \rangle^{cont.}(\mu) = (1 + \alpha_S C_1(\mu)) \langle \bar{B}_q | Q_q^1 | B_q \rangle^{lat.} + \alpha_S C_2(\mu) \langle \bar{B}_q | Q_q^2 | B_q \rangle^{lat.}$
- $\mu \to m_b$.
- $\alpha_S = \alpha_V(q^*)$, α_V determined from lattice measurement (in this case small Wilson loops) and q^* from typical gluon momentum in loops.

Data for $\langle \bar{B}_q | Q_q^2 | B_q \rangle$: $\beta S_q = f_{B_q} \sqrt{M_{B_q} B S_{B_q}}$

beta
$$S_q r_1^{3/2} = f_{B_q} sqrt(M_{B_q} BS_{B_q}) r_1^{3/2}$$
: Valence mass

Rooted Staggered Chiral Perturbation Theory (rS χ PT)

-Determine light quark mass dependence using partially quenched data and extrapolate to continuum and physical *d* mass, interpolate to physical *s* mass.

- Heavy-Light staggered chiral theory incorporates $\mathcal{O}(a^2)$ taste violations.
- $M_{ij,\Xi}^2 = \mu(m_i + m_j) + a^2 \Delta_{\Xi}.$

 m_i, m_j are quark masses, Δ_{Ξ} is the taste splitting.

- $\langle \bar{B}_q | Q_1^q | B_q \rangle_{QCD} = \frac{8}{3} m_{B_q}^2 f_{B_q}^2 B_q = m_{B_q} \langle \bar{B}_q | Q_1^q | B_q \rangle_{HQET} = m_{B_q} \beta \left[1 + (NLO \log s) + L_v m_q + L_s (2m_L + m_H) + L_a a^2 \right] + NNLO(analytic).$
- Central value fit uses all NNLO analytic terms.

-Light quark discretization and systematic fit errors estimated by including/excluding *NNLO* terms in fit.

- To extrapolate: $a \to 0$, $m_L \to \frac{m_u + m_d}{2}$, $m_H \to m_s$, and $m_q \to m_d$ or m_s
- $\mathcal{O}(a^2)$ taste violations/light quark discretization errors removed.

Chiral Fits-Example: $\beta_q = f_{B_q} \sqrt{M_{B_q} B_{B_q}}$

-Fits are done simultaneously to all 6 sea and valence quark masses (36 mass points).

- -Data points along fit lines are uncorrelated: sea pion $m_{LL}^2 = \mu(m_L + m_L)$.
- -Continuum/mass extrapolation not shown.

Chiral Fits-Extrapolation for ξ

Fit to and Extrapolate $\xi' = f_{B_s} \sqrt{M_{B_s} B_{B_s}} / f_{B_d} \sqrt{M_{B_d} B_{B_d}}$

- Statistical errors reduced
- Many systematic errors cancel. (Perturbative matching corrections are negligible < 1%.)
- Many parameters in chiral fit cancel (simplifies fit and Ansatz)
- Phenomenologically useful quantity.

Chiral Fits-Extrapolation for ξ cont.: m_{sea} plane

-Fits are done simultaneously to all 6 sea and valence quark masses (36 mass points). -Errors on extrapolation point are statistical only.

xi': NLO+NNLO(analytic)

Lattice 2008, The XXVI International Symposium on Lattice Field Theory, Williamsburg - p.1

Chiral Fits-Extrapolations for ξ cont.: m_{val} plane

Fits are done simultaneously to all 6 sea and valence quark masses (36 mass points).

1.3 f_BB 005 f_BB 007 1.2 f_BB 010 f_BB 020 fit 005 Ľ. fit 007 fit 010 1.1 fit 020 f_BB 0062 f_BB 0124 fit 0062 fit 0124 Extrapolation Extrapolation 0.2 0.4 0.6 0.8 **1.8** 1.6 0 1.2 1.4 2 $r_1^2 m_2^2$ ⁻_{qq} valence pion mass

xi': Valence plane, NLO+NNLO(analytic)

Results and Uncertainties

Parameter	ξ	eta_d	eta_s
Central Value	1.211		
Source of Uncertainty	% Error		
Statistical	2.5	4	2.7
Higher Order Matching	~ 0.5	4	4
Heavy Quark Discretization	0.2	3.5	3.5
Chiral extrap. errors			
Light Quark Discretization + Chiral Fits	2.5	4.3	1.3
scale uncertainty (r_1)	0.2	3.1	3.0
$g_{BB^*\pi}$	0.8	1.4	2.3
input parameters: \hat{m} , m_d , m_s	0.7	0.5	0.3
estimated from FNAL-MILC f_B			
κ_b	<0.1	1.1	1.1
finite volume	0.6	0.6	0.2
Total Systematic	2.8	7.8	6.8

Comparison of ξ and f_{B_s}/f_{B_d}

- $\frac{f_{B_s}}{f_{B_d}}$ determined from separate analysis on 2+1 MILC lattices.
- Ratio $\frac{B_{B_s}}{B_{B_d}} = 1.014(0.015)$ determined from separate correlator and chiral fits.
- $\frac{B_{B_s}}{B_{B_d}}$ is preliminary and uncertainty is statistical only.
- Statistical and systematic uncertainty of other parameters are added in quadrature.

Summary & Outlook

- The calculation of ξ , $f_{B_d}\sqrt{M_{B_d}B_{B_d}}$, and $f_{B_s}\sqrt{M_{B_s}B_{B_s}}$ is nearly complete \rightarrow likely with total uncertainties of $\sim 4\%$, $\sim 9\%$, and $\sim 8\%$ respectively.
- Increase statistics

Additional Configurations: $N_{conf} \sim 600 \rightarrow \sim 2000$.

Time sources: $N_{ts} = 4 \rightarrow 16$ spatial origin randomized to reduce correlations.

3-5% correlator errors \rightarrow 1-2%.

- Matching: Partial non-perturbative determination of coefficients, $4\% \rightarrow 2\%$.
- Super-fine lattice run (a = 0.06 fm).
- Most aspects of chiral fits will be improved by smaller correlator errors and super-fine lattice addition.
- Additional mixing matrix elements that arise in extensions to the Standard Model are straightforward to calculate (no additional propagator inversions needed).