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Status of Experimental Measurement
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• ∆Ms = 17.77 ± 0.10(stat.) ± 0.07(syst.)ps−1(CDF 2006)

• ∆Md = 0.507 ± 0.005ps−1(PDG2007Average)
σ∆ms

, σ∆md
< 1%

• |Vtd/Vts| = ξ
√

∆md

∆ms

mBs

mBd

= 0.2060 ± 0.0007(exp.)+0.0081
−0.0060(theo.)

Theoretical error is from ξ =
fBs

√
BBs

fBd

√
BBd

= 1.21+0.047
−0.035,

σξ ≈ 4%

• ξ is derived by combining calculations from –
fBq

: nf = 2 + 1, HPQCD
BBq

: nf = 2, JLQCD (quenched strange)

Lattice 2008, The XXVI International Symposium on Lattice Field Theory, Williamsburg – p.3



B Mixing Hadronic Matrix Element

∆Mq = G2

F M2

W

6π2 |V ∗
tqVtb|2ηB

2 S0(xt)M
2
Bq

f2
Bq

B̂Bq
, q = d, s

•xt = m2
t /M

2
W , ηB

2 is a perturbative QCD correction factor and
S0(xt) is the Inami-Lim function.

• For |V ∗
tqVtb| we need the hadronic matrix element:

-〈B̄q|Q1
q |Bq〉 = 8

3MBq
f2

Bq
BBq

→ Q1
q = b̄γµ(1 − γ5)qb̄γµ(1 − γ5)q.

• |Vtd

Vts
| =

fBs

√
BBs

fBd

√
BBd

√

∆MdMBs

∆MsMBd

= ξ
√

∆md

∆ms

mBs

mBd

-ξ has smaller statistical and systematic uncertainties
(statistical errors reduced, scale uncertainty reduced etc.)

-|Vtd

Vts
| constrains the CKM unitarity triangle (determines

the length of one side).
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Simulation Details: Configurations and Actions

Particle Action Errors

Gluons MILC O(a2αs, a
4)

Light quarks Asqtad O(a2αs, a
4)

Heavy quarks Fermilab O(αsΛQCD/M, (ΛQCD/M)2)

### Details ###

• Gluons- MILC 2+1 gauge configurations (Symanzik and
Tadpole Improved).

• Light quarks- sea quarks: {u, d, s} and valence quarks: q.
• Heavy Quark- b quark, simulated using clover action with

Fermilab Interpretation. Heavy quark “rotated" at source to
remove O(ΛQCD/M) errors in Q1

q and exponentially
smeared at sink to improve ground state overlap.
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Simulation Details: Lattice Spacings and Masses Used

• Calculation done on 2 lattice spacings.
6 light sea quark masses, lightest mπ,sea ∼ 250 MeV.
6 light valence quark masses, lightest mπ,val ∼ 240 MeV.

• 4 time sources each.

aml/ams amv Nconfigs

a=0.12 fm
005/050 0.005,0.007,0.01,0.02,0.03,0.0415 529
007/050 0.005,0.007,0.01,0.02,0.03,0.0415 833
010/050 0.005,0.007,0.01,0.02,0.03,0.0415 580
020/050 0.005,0.007,0.01,0.02,0.03,0.0415 460

a=0.09 fm
0062/031 0.0031,0.0044,0.0062,0.0124,0.0272,0.031 553
0124/031 0.0031,0.0042,0.0062,0.0124,0.0272,0.031 534
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Correlators Used in Calculation

-Simultaneous fits to two-point and three-point correlator to extract mixing parameters.
-Qq

1 location is fixed with B̄ and B positions varying→use same propagator for backward
and forward moving quarks.

• Three-point Correlator:
⋄ CQ1

q
(t1, t2) =

P

~x1, ~x2
〈B̄q(t1, ~x1)|Q1

q(0)|Bq(t2, ~x2)〉 =
P

i,j((−1)t1+1)i((−1)t2+1)j ZiZjOij

(2Ei)(2Ej)
e−Eit1−Ejt2 ,

⋄ O00 = 〈B̄q |Q1
q|Bq〉 = 8

3
M2

Bq
f2

Bq
BBq

.

• Two-point Correlators:
To extract fBq

p

MBq
BBq

:

C
q
P S

(t) =
P

~x〈Bq(t, ~x)|q̄(0)γ5b(0)〉 =
P

i((−1)t+1)i |Zi|
2

2Ei
e−Eit.

To extract BBq
:

C
q
A4

(t) =
P

~x〈Bq(t, ~x)|q̄γ0γ5b(0)〉 =
P

i((−1)t+1)i A4iZi

2Ei
e−Eit,

A40 = fBq
MBq

.
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Example Correlator Fit: 2-D Three-point Correlator

Placing Q1
q at origin allows fit to be done 2 dimensionally with only two quark inversions,

over t1 and t2. (Statistical errors on data not shown)
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Data for 〈B̄q|Q1
q|Bq〉: βq = fBq

√

MBq
BBq

• Sea mass dependence is mild.

• Lattice spacing dependence is obvious but not extreme.

• Statistical errors vary between 2-5%.
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Perturbative Matching

Matching coefficient calculation is nearly complete: only preliminary results for the
coefficients at present.

• Lattice and continuum matrix elements have different regularizations, must match
to obtain physical results.

• Q1
q mixes with Q2

q = b̄(1 − γ5)sb̄(1 − γ5)s at one-loop.
→ 〈B̄q |Q2

q |Bq〉 calculation analogous to 〈B̄q |Q1
q|Bq〉. Built from same

propagators so cheap to calculate.

• 〈B̄q |Q1
q|Bq〉cont.(µ) = (1 + αSC1(µ))〈B̄q |Q1

q|Bq〉lat. + αSC2(µ)〈B̄q |Q2
q|Bq〉lat.

• µ → mb.

• αS = αV (q∗), αV determined from lattice measurement (in this case small Wilson
loops) and q∗ from typical gluon momentum in loops.
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Data for 〈B̄q|Q2
q|Bq〉: βSq = fBq

√

MBq
BSBq
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Rooted Staggered Chiral Perturbation Theory (rSχPT)

-Determine light quark mass dependence using partially quenched data and extrapolate
to continuum and physical d mass, interpolate to physical s mass.

• Heavy-Light staggered chiral theory incorporates O(a2) taste violations.

• M2
ij,Ξ = µ(mi + mj) + a2∆Ξ.

mi, mj are quark masses, ∆Ξ is the taste splitting.

• ˙

B̄q |Q
q
1|Bq

¸

QCD
= 8

3
m2

Bq
f2

Bq
Bq = mBq

˙

B̄q|Q
q
1|Bq

¸

HQET
=

mBq
β

ˆ

1 + (NLO logs) + Lvmq + Ls(2mL + mH) + Laa2
˜

+

NNLO(analytic).

• Central value fit uses all NNLO analytic terms.
-Light quark discretization and systematic fit errors estimated by

including/excluding NNLO terms in fit.

• To extrapolate: a → 0, mL → mu+md

2
, mH → ms, and mq → md or ms

• O(a2) taste violations/light quark discretization errors removed.
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Chiral Fits-Example: βq = fBq

√

MBq
BBq

-Fits are done simultaneously to all 6 sea and valence quark masses (36 mass points).
-Data points along fit lines are uncorrelated: sea pion m2

LL = µ(mL + mL).
-Continuum/mass extrapolation not shown.
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Chiral Fits-Extrapolation for ξ

Fit to and Extrapolate ξ′ = fBs

√

MBs
BBs

/fBd

√

MBd
BBd

• Statistical errors reduced
• Many systematic errors cancel. (Perturbative matching

corrections are negligible < 1%.)
• Many parameters in chiral fit cancel (simplifies fit and

Ansatz)
• Phenomenologically useful quantity.
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Chiral Fits-Extrapolation for ξ cont.: msea plane

-Fits are done simultaneously to all 6 sea and valence quark masses (36 mass points).
-Errors on extrapolation point are statistical only.
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Chiral Fits-Extrapolations for ξ cont.: mval plane

Fits are done simultaneously to all 6 sea and valence quark masses (36 mass points).
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Results and Uncertainties

Parameter ξ βd βs

Central Value 1.211

Source of Uncertainty % Error

Statistical 2.5 4 2.7

Higher Order Matching ∼ 0.5 4 4

Heavy Quark Discretization 0.2 3.5 3.5

Chiral extrap. errors

Light Quark Discretization + Chiral Fits 2.5 4.3 1.3

scale uncertainty (r1) 0.2 3.1 3.0

gBB∗π 0.8 1.4 2.3

input parameters: m̂,md,ms 0.7 0.5 0.3

estimated from FNAL-MILC fB

κb <0.1 1.1 1.1

finite volume 0.6 0.6 0.2

Total Systematic 2.8 7.8 6.8
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Comparison of ξ and fBs
/fBd

• fBs

fBd

determined from separate analysis on 2+1 MILC

lattices.

• Ratio BBs

BBd

= 1.014(0.015) determined from separate

correlator and chiral fits.

• BBs

BBd

is preliminary and uncertainty is statistical only.

• Statistical and systematic uncertainty of other parameters
are added in quadrature.

fBs

fBd

×
√

BBs

BBd

ξ

1.243(0.037) × 1.007(0.007) = 1.252(0.038) 1.211(0.045)
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Summary & Outlook

• The calculation of ξ, fBd

p

MBd
BBd

, and fBs

p

MBs
BBs

is nearly complete →

likely with total uncertainties of ∼ 4%, ∼ 9%, and ∼ 8% respectively.

• Increase statistics
Additional Configurations: Nconf ∼ 600 →∼ 2000.
Time sources: Nts = 4 → 16 spatial origin randomized to reduce

correlations.
3-5% correlator errors→1-2%.

• Matching: Partial non-perturbative determination of coefficients, 4% → 2%.

• Super-fine lattice run (a = 0.06 fm).

• Most aspects of chiral fits will be improved by smaller correlator errors and
super-fine lattice addition.

• Additional mixing matrix elements that arise in extensions to the Standard Model
are straightforward to calculate (no additional propagator inversions needed).
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