Calculation of $B^{0}-\bar{B}^{0}$ Mixing Matrix Elements in 2+1 Lattice QCD

Richard Evans

rtevans@uiuc.edu

Fermilab Lattice and MILC Collaborations

Outline

- B mixing experimental status and motivation for calculation
- Simulation Details: actions and parameters
- Correlators and fitting
- Perturbative matching
- Chiral Extrapolations
- Results:

For ξ only

- Outlook

Status of Experimental Measurement

- $\Delta M_{s}=17.77 \pm 0.10$ (stat.) ± 0.07 (syst.) $\mathrm{ps}^{-1}(C D F 2006)$
- $\Delta M_{d}=0.507 \pm 0.005$ p $^{-1}(P D G 2007$ Average $)$

$$
\sigma_{\Delta m_{s}}, \sigma_{\Delta m_{d}}<1 \%
$$

- $\left|V_{t d} / V_{t s}\right|=\xi \sqrt{\frac{\Delta m_{d}}{\Delta m_{s}} \frac{m_{B_{s}}}{m_{B_{d}}}}=0.2060 \pm 0.0007$ (exp. $)_{-0.0060}^{+0.0081}$ (theo.)

Theoretical error is from $\xi=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}=1.21_{-0.035}^{+0.047}$,
$\sigma_{\xi} \approx 4 \%$

- ξ is derived by combining calculations from -

$$
\begin{aligned}
& f_{B_{q}}: n_{f}=2+1, \mathrm{HPQCD} \\
& B_{B_{q}}: n_{f}=2, \text { JLQCD (quenched strange) }
\end{aligned}
$$

B Mixing Hadronic Matrix Element

$\Delta M_{q}=\frac{G_{F}^{2} M_{N W}^{2}}{6 \pi^{2}}\left|V_{t q}^{*} V_{t b}\right|^{2} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{q}}^{2} f_{B_{q}}^{2} \hat{B}_{B_{q}}, q=d, s$

- $x_{t}=m_{t}^{2} / M_{W}^{2}, \eta_{2}^{B}$ is a perturbative QCD correction factor and $S_{0}\left(x_{t}\right)$ is the Inami-Lim function.
- For $\left|V_{t q}^{*} V_{t b}\right|$ we need the hadronic matrix element:

$$
\begin{aligned}
& -\left\langle\bar{B}_{q}\right| Q_{q}^{1}\left|B_{q}\right\rangle=\frac{8}{3} M_{B_{q}} f_{B_{q}}^{2} B_{B_{q}} \\
& \rightarrow Q_{q}^{1}=\bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q .
\end{aligned}
$$

- $\left|\frac{V_{t d}}{V_{t s}}\right|=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}} \sqrt{\frac{\Delta M_{d} M_{B_{s}}}{\Delta M_{s} M_{B_{d}}}}=\xi \sqrt{\frac{\Delta m_{d}}{\Delta m_{s}} \frac{m_{B_{s}}}{m_{B_{d}}}}$
$-\xi$ has smaller statistical and systematic uncertainties (statistical errors reduced, scale uncertainty reduced etc.)
$-\left|\frac{V_{t d}}{V_{t g}}\right|$ constrains the CKM unitarity triangle (determines the length of one side).

Simulation Details: Configurations and Actions

Particle	Action	Errors
Gluons	MILC	$\mathcal{O}\left(a^{2} \alpha_{s}, a^{4}\right)$
Light quarks	Asqtad	$\mathcal{O}\left(a^{2} \alpha_{s}, a^{4}\right)$
Heavy quarks	Fermilab	$\mathcal{O}\left(\alpha_{s} \Lambda_{\mathrm{QCD}} / M,\left(\Lambda_{\mathrm{QCD}} / M\right)^{2}\right)$

\#\#\# Details \#\#\#

- Gluons- MILC 2+1 gauge configurations (Symanzik and Tadpole Improved).
- Light quarks- sea quarks: $\{u, d, s\}$ and valence quarks: q.
- Heavy Quark- b quark, simulated using clover action with Fermilab Interpretation. Heavy quark "rotated" at source to remove $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / M\right)$ errors in Q_{q}^{1} and exponentially smeared at sink to improve ground state overlap.

Simulation Details: Lattice Spacings and Masses Used

- Calculation done on 2 lattice spacings.

6 light sea quark masses, lightest $m_{\pi, \text { sea }} \sim 250 \mathrm{MeV}$. 6 light valence quark masses, lightest $m_{\pi, v a l} \sim 240 \mathrm{MeV}$.

- 4 time sources each.

$a m_{l} / a m_{s}$	$a m_{v}$	$N_{\text {configs }}$
$a=0.12 \mathrm{fm}$		
$005 / 050$	$0.005,0.007,0.01,0.02,0.03,0.0415$	529
$007 / 050$	$0.005,0.007,0.01,0.02,0.03,0.0415$	833
$010 / 050$	$0.005,0.007,0.01,0.02,0.03,0.0415$	580
$020 / 050$	$0.005,0.007,0.01,0.02,0.03,0.0415$	460
$a=0.09 \mathrm{fm}$		
$0062 / 031$	$0.0031,0.0044,0.0062,0.0124,0.0272,0.031$	553
$0124 / 031$	$0.0031,0.0042,0.0062,0.0124,0.0272,0.031$	534

Correlators Used in Calculation

-Simultaneous fits to two-point and three-point correlator to extract mixing parameters. $-Q_{1}^{q}$ location is fixed with \bar{B} and B positions varying \rightarrow use same propagator for backward and forward moving quarks.

- Three-point Correlator:

$$
\begin{aligned}
& \diamond C_{Q_{q}^{1}}\left(t_{1}, t_{2}\right)=\sum_{\overrightarrow{x_{1}, \overrightarrow{x_{2}}}}\left\langle\bar{B}_{q}\left(t_{1}, \overrightarrow{x_{1}}\right)\right| Q_{q}^{1}(0)\left|B_{q}\left(t_{2}, \overrightarrow{x 2}\right)\right\rangle= \\
& \sum_{i, j}\left((-1)^{t_{1}+1}\right)^{i}\left((-1)^{t_{2}+1}\right)^{j} \frac{Z_{i} Z_{j} O_{i j}}{\left(2 E_{i}\right)\left(2 E_{j}\right)} e^{-E_{i} t_{1}-E_{j} t_{2}}, \\
& \quad \diamond O_{00}=\left\langle\overline{B_{q}}\right| Q_{q}^{1}\left|B_{q}\right\rangle=\frac{8}{3} M_{B_{q}}^{2} f_{B_{q}}^{2} B_{B_{q}} .
\end{aligned}
$$

- Two-point Correlators:

> To extract $f_{B_{q}} \sqrt{M_{B_{q}} B_{B_{q}}}$:
> $C_{P S}^{q}(t)=\sum_{\vec{x}}\left\langle B_{q}(t, \vec{x}) \mid \bar{q}(0) \gamma_{5} b(0)\right\rangle=\sum_{i}\left((-1)^{t+1}\right)^{i} \frac{\left|Z_{i}\right|^{2}}{2 E_{i}} e^{-E_{i} t}$.

To extract $B_{B_{q}}$:

$$
\begin{aligned}
C_{A_{4}}^{q}(t) & =\sum_{\overrightarrow{\vec{x}}}\left\langle B_{q}(t, \vec{x}) \mid \bar{q} \gamma_{0} \gamma_{5} b(0)\right\rangle=\sum_{i}\left((-1)^{t+1}\right)^{i} \frac{A_{4 i} Z_{i}}{2 E_{i}} e^{-E_{i} t}, \\
& A_{40}
\end{aligned}=f_{B_{q}} M_{B_{q}} .
$$

Example Correlator Fit: 2-D Three-point Correlator

Placing Q_{q}^{1} at origin allows fit to be done 2 dimensionally with only two quark fitinversions, over t_{1} and t_{2}. (Statistical errors on data not shown)

Data for $\left\langle\bar{B}_{q}\right| Q_{q}^{1}\left|B_{q}\right\rangle: \quad \beta_{q}=f_{B_{q}} \sqrt{M_{B_{q}} B_{B_{q}}}$

- Sea mass dependence is mild.
- Lattice spacing dependence is obvious but not extreme.
- Statistical errors vary between 2-5\%.

$$
\operatorname{beta}_{q} r_{1}{ }^{3 / 2}=f_{B_{q}} \operatorname{sqrt}\left(M_{B_{q}} B_{B_{q}}\right) r_{1}^{3 / 2}: \text { Valence mass }
$$

Perturbative Matching

Matching coefficient calculation is nearly complete: only preliminary results for the coefficients at present.

- Lattice and continuum matrix elements have different regularizations, must match to obtain physical results.
- Q_{q}^{1} mixes with $Q_{q}^{2}=\bar{b}\left(1-\gamma_{5}\right) s \bar{b}\left(1-\gamma_{5}\right) s$ at one-loop.
$\rightarrow\left\langle\bar{B}_{q}\right| Q_{q}^{2}\left|B_{q}\right\rangle$ calculation analogous to $\left\langle\bar{B}_{q}\right| Q_{q}^{1}\left|B_{q}\right\rangle$. Built from same propagators so cheap to calculate.
- $\left\langle\bar{B}_{q}\right| Q_{q}^{1}\left|B_{q}\right\rangle^{\text {cont. }}(\mu)=\left(1+\alpha_{S} C_{1}(\mu)\right)\left\langle\bar{B}_{q}\right| Q_{q}^{1}\left|B_{q}\right\rangle^{l a t .}+\alpha_{S} C_{2}(\mu)\left\langle\bar{B}_{q}\right| Q_{q}^{2}\left|B_{q}\right\rangle^{l a t .}$
- $\mu \rightarrow m_{b}$.
- $\alpha_{S}=\alpha_{V}\left(q^{*}\right), \alpha_{V}$ determined from lattice measurement (in this case small Wilson loops) and q^{*} from typical gluon momentum in loops.

Data for $\left\langle\bar{B}_{q}\right| Q_{q}^{2}\left|B_{q}\right\rangle: \quad \beta S_{q}=f_{B_{q}} \sqrt{M_{B_{q}} B S_{B_{q}}}$

Rooted Staggered Chiral Perturbation Theory (rS χ PT)

-Determine light quark mass dependence using partially quenched data and extrapolate to continuum and physical d mass, interpolate to physical s mass.

- Heavy-Light staggered chiral theory incorporates $\mathcal{O}\left(a^{2}\right)$ taste violations.
- $M_{i j, \Xi}^{2}=\mu\left(m_{i}+m_{j}\right)+a^{2} \Delta_{\Xi}$.
m_{i}, m_{j} are quark masses, Δ_{Ξ} is the taste splitting.
- $\left\langle\bar{B}_{q}\right| Q_{1}^{q}\left|B_{q}\right\rangle_{Q C D}=\frac{8}{3} m_{B_{q}}^{2} f_{B_{q}}^{2} B_{q}=m_{B_{q}}\left\langle\bar{B}_{q}\right| Q_{1}^{q}\left|B_{q}\right\rangle_{H Q E T}=$ $m_{B_{q}} \beta\left[1+(N L O \operatorname{logs})+L_{v} m_{q}+L_{s}\left(2 m_{L}+m_{H}\right)+L_{a} a^{2}\right]+$ NNLO(analytic).
- Central value fit uses all NNLO analytic terms.
-Light quark discretization and systematic fit errors estimated by including/excluding $N N L O$ terms in fit.
- To extrapolate: $a \rightarrow 0, m_{L} \rightarrow \frac{m_{u}+m_{d}}{2}, m_{H} \rightarrow m_{s}$, and $m_{q} \rightarrow m_{d}$ or m_{s}
- $\mathcal{O}\left(a^{2}\right)$ taste violations/light quark discretization errors removed.

Chiral Fits-Example: $\beta_{q}=f_{B_{q}} \sqrt{M_{B_{q}} B_{B_{q}}}$

-Fits are done simultaneously to all 6 sea and valence quark masses (36 mass points).
-Data points along fit lines are uncorrelated: sea pion $m_{L L}^{2}=\mu\left(m_{L}+m_{L}\right)$.
-Continuum/mass extrapolation not shown.
beta $=r_{1}{ }^{3 / 2} f_{B} s q r t\left(M_{B} B_{B}\right)$: Chiral fit to beta ${ }_{d}$ and beta ${ }_{s}$, NLO + NNLO(analytic)

Chiral Fits-Extrapolation for ξ

Fit to and Extrapolate $\xi^{\prime}=f_{B_{s}} \sqrt{M_{B_{s}} B_{B_{s}}} / f_{B_{d}} \sqrt{M_{B_{d}} B_{B_{d}}}$

- Statistical errors reduced
- Many systematic errors cancel. (Perturbative matching corrections are negligible < 1\%.)
- Many parameters in chiral fit cancel (simplifies fit and Ansatz)
- Phenomenologically useful quantity.

Chiral Fits-Extrapolation for ξ cont.: $m_{\text {sea }}$ plane

-Fits are done simultaneously to all 6 sea and valence quark masses (36 mass points). -Errors on extrapolation point are statistical only.

Chiral Fits-Extrapolations for ξ cont.: $m_{v a l}$ plane

Fits are done simultaneously to all 6 sea and valence quark masses (36 mass points).
xi': Valence plane, NLO+NNLO(analytic)

Results and Uncertainties

Parameter	ξ	β_{d}	β_{s}	
Central Value	1.211			
Source of Uncertainty	$\%$ Error			
Statistical	2.5	4	2.7	
Higher Order Matching	~ 0.5	4	4	
Heavy Quark Discretization	0.2	3.5	3.5	
Chiral extrap. errors				
Light Quark Discretization + Chiral Fits	2.5	4.3	1.3	
scale uncertainty $\left(r_{1}\right)$	0.2	3.1	3.0	
$g_{B B^{*} \pi}$	0.8	1.4	2.3	
input parameters: \hat{m}, m_{d}, m_{s}	0.7	0.5	0.3	
estimated from FNAL-MILC f_{B}				
κ_{b}	<0.1	1.1	1.1	
finite volume	0.6	0.6	0.2	
Total Systematic	2.8	7.8	6.8	

Comparison of ξ and $f_{B_{s}} / f_{B_{d}}$

- $\frac{f_{B_{s}}}{f_{B_{d}}}$ determined from separate analysis on 2+1 MILC lattices.
- Ratio $\frac{B_{B_{s}}}{B_{B_{d}}}=1.014(0.015)$ determined from separate correlator and chiral fits.
- $\frac{B_{B_{s}}}{B_{B_{d}}}$ is preliminary and uncertainty is statistical only.
- Statistical and systematic uncertainty of other parameters are added in quadrature.

$\frac{f_{B_{s}}}{f_{B_{d}}} \times \sqrt{\frac{B_{B_{s}}}{B_{B_{d}}}}$	ξ
$1.243(0.037) \times 1.007(0.007)=1.252(0.038)$	$1.211(0.045)$

Summary \& Outlook

- The calculation of ξ, $f_{B_{d}} \sqrt{M_{B_{d}} B_{B_{d}}}$, and $f_{B_{s}} \sqrt{M_{B_{s}} B_{B_{s}}}$ is nearly complete \rightarrow likely with total uncertainties of $\sim 4 \%, \sim 9 \%$, and $\sim 8 \%$ respectively.
- Increase statistics

Additional Configurations: $N_{\text {conf }} \sim 600 \rightarrow \sim 2000$.
Time sources: $N_{t s}=4 \rightarrow 16$ spatial origin randomized to reduce correlations.
$3-5 \%$ correlator errors $\rightarrow 1-2 \%$.

- Matching: Partial non-perturbative determination of coefficients, $4 \% \rightarrow 2 \%$.
- Super-fine lattice run ($a=0.06 \mathrm{fm}$).
- Most aspects of chiral fits will be improved by smaller correlator errors and super-fine lattice addition.
- Additional mixing matrix elements that arise in extensions to the Standard Model are straightforward to calculate (no additional propagator inversions needed).

