Probing SU(3) Chiral Perturbation Theory fits to $2+1$ flavor DWF QCD

Robert Mawhinney, Columbia University For the RBC and UKQCD Collaborations

Lattice 2008
College of William and Mary

$$
\text { July 14-19, } 2008
$$

- NLO SU(3) ChPT fits for decay constants and masses
- Adding another observable to the fits, $\left\langle\pi^{+}\right| \bar{s} d\left|K^{+}\right\rangle$
- First efforts at full NNLO fits

Collaboration Members

RBC members:
Y. Aoki, T. Blum, M. Cheng, N. Christ, S. Cohen, C. Dawson, T. Doi, K. Hashimoto, T. Ishikawa, T. Izubuchi, C. Jung, C. Kim, M. Li, S. Li, M. Lightman, M. Lin, R. Mawhinney, S. Ohta, S. Sasaki, E. Scholz, A. Soni, T. Yamazaki

UKQCD members:
C. Allton, D. Antonio, K. Bowler, P. Boyle, D. Brommel, M. Clark, M. Donnellan, J. Flynn, A. Hart, B. Joo, A. Juettner, C. Kelly, A. Kennedy, R. Kenway, C. Maynard, B. Pendleton, C. Sachrajda,
A. Trivini, R. Tweedie, J. Wennekers, A. Yamaguchi, J. Zanotti

Zero Temperature Ensembles

Volume	$a^{-1}(\mathrm{GeV})$ $m_{\text {res }}$	$m_{l} m_{l}$	MD time units	\# wall sources
$16^{3} \times 32 \times 8$	$1.8(1)$	$(0.02,0.04)$	1797.5	
$16^{3} \times 32 \times 16$	$1.62(4)$	$(0.01,0.04)$	4015	
$(1.82 \mathrm{fm})^{3}$	$0.00308(4)$	$(0.02,0.04)$	4045	
	$(0.03,0.04)$	7600		
	$(0.005,0.04)$	8200	2×90	
$24^{3} \times 64 \times 16$	$1.73(3)$	$(0.01,0.04)$	8200	2×90
$(2.74 \mathrm{fm})^{3}$	$0.00315(2)$	$(0.02,0.04)$	2850	
$32^{3} \times 64 \times 16$	$\approx 2.42(4)$	$(0.03,0.04)$	2813	
$(\approx 2.60 \mathrm{fm})^{3}$	≈ 0.0006	$(0.006,0.03)$	4948	170
$48^{3} \times 64 \times 16$	$\approx 2.42(4)$	$(0.008,0.03)$	4960	105
$(\approx 3.91 \mathrm{fm})^{3}$	≈ 0.0006	$(0.002,0.03)$	2470	110

Analysis Overview

- Data from $24^{3} \times 64 \times 16$ volumes, $(2.74 \mathrm{fm})^{3}, 1 / \mathrm{a}=1.73(3) \mathrm{GeV}$
- RBC and UKQCD paper, arXiv:0804.0473
- Coulomb gauge fixed wall sources at $\mathrm{t}=5$ and 59 .
- Periodic and anti-periodic boundary conditions used to generate $\mathrm{P}+\mathrm{A}$ propagators to remove "around the world" effects.
- Masses of Ω, π, and K fix lattice scale, $\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}$ and m_{s} using $\mathrm{SU}(2)$ ChPT for chiral extrapolation (Enno Scholz talk).
- Partially quenched pseudoscalar masses and decay constants calculated
- $\mathrm{m}_{\pi} \mathrm{L}$ for various valence masses given below

Light dynamical	Valence Mass		
mass	$\mathrm{m}_{\mathrm{x}}=0.001$	$\mathrm{~m}_{\mathrm{x}}=0.005$	$\mathrm{~m}_{\mathrm{x}}=0.01$
0.005	3.36	4.60	5.76
0.01	3.44	4.65	5.81

Chiral Perturbation Theory

- Expansion in powers of

$$
\frac{m_{P S}^{2}}{(4 \pi f)^{2}} \quad \frac{p^{2}}{(4 \pi f)^{2}}
$$

- $\mathrm{SU}(2) \mathrm{ChPT}: \mathrm{m}_{1}$ is light and only pion masses enter in logs
- $\mathrm{SU}(3)$ ChPT: m_{1} and m_{s} are considered light, and both enter logs
- Example (Sharpe and Shoresh, 2000) with six free parameters

$$
\begin{aligned}
m_{P}^{2}= & \chi_{V}\left\{1+\frac{48}{f^{2}}\left(2 L_{6}-L_{4}\right) \bar{\chi}+\frac{16}{f^{2}}\left(2 L_{8}-L_{5}\right) \chi_{V}\right. \\
& +\frac{1}{24 f^{2} \pi^{2}}\left[\frac{2 \chi_{V}-\chi_{l}-\chi_{s}}{\chi_{V}-\chi_{\eta}} \chi_{V} \log \chi_{V}-\frac{\left(\chi_{V}-\chi_{l}\right)\left(\chi_{V}-\chi_{s}\right)}{\left(\chi_{V}-\chi_{\eta}\right)^{2}} \chi_{V} \log \chi_{V}\right. \\
& \left.\left.+\frac{\left(\chi_{V}-\chi_{l}\right)\left(\chi_{V}-\chi_{s}\right)}{\chi_{V}-\chi_{\eta}}\left(1+\log \chi_{V}\right)+\frac{\left(\chi_{\eta}-\chi_{l}\right)\left(\chi_{\eta}-\chi_{s}\right)}{\left(\chi_{V}-\chi_{\eta}\right)^{2}} \chi_{\eta} \log \chi_{\eta}\right]\right\} \\
f_{P}= & f\left\{1+\frac{8}{f^{2}}\left(3 L_{4} \bar{\chi}+L_{5} \chi_{V}\right)\right. \\
& \left.-\frac{1}{16 \pi^{2} f^{2}}\left[\left(\chi_{V}+\chi_{l}\right) \log \frac{\chi_{V}+\chi_{l}}{2}+\frac{\chi_{V}+\chi_{s}}{2} \log \frac{\chi_{V}+\chi_{s}}{2}\right]\right\} \\
\chi_{i}= & 2 B_{0}\left(m_{i}+m_{\mathrm{res}}\right)
\end{aligned}
$$

$\mathrm{SU}(3) \mathrm{ChPT}$ for $\mathrm{m}_{\mathrm{PS}}<420 \mathrm{MeV}$

$\mathrm{SU}(3) \mathrm{ChPT}$ for $\mathrm{m}_{\mathrm{PS}}<670 \mathrm{MeV}$

LO and NLO for SU(3) ChPT

Comparison of SU(3) ChPT LECs

- Convergence of $\mathrm{SU}(3)$ for $\mathrm{m}_{\mathrm{PS}}<420 \mathrm{MeV}$ poor
- Because of poor convergence, do not attempt a systematic error.
- Naively quote results for LECs from our fits
- Generally in good agreement with others

	$L_{4}^{(3)}$	$L_{5}^{(3)}$	$L_{6}^{(3)}$	$L_{8}^{(3)}$	$\left(2 L_{8}^{(3)}-L_{5}^{(3)}\right)$	$\left(2 L_{6}^{(3)}-L_{4}^{(3)}\right)$
this work a	$1.4(0.8)(-)$	$8.7(1.0)(-)$	$0.7(0.6)(-)$	$5.6(0.4)(-)$	$2.4(0.4)(-)$	$0.0(0.4)(-)$
Bijnens, NLO	$\equiv 0$	14.6	$\equiv 0$	10.0	5.4	$\equiv 0$
Bijnens, NNLO	$\equiv 0$	$9.7(1.1)$	$\equiv 0$	$6.0(1.8)$	2.3^{b}	$\equiv 0$
MILC, 2007	$1.3(3.0)\binom{+3.0}{-1.0}$	$13.9(2.0)\left(_{-1.0}^{+2.0}\right)$	$2.4(2.0)\left(_{-1.0}^{+2.0}\right)$	$7.8(1.0)(1.0)$	$2.6(1.0)(1.0)$	$3.4(1.0)\left({ }_{-3.0}^{+2.0}\right)$

f_{PS} comparison $\mathrm{SU}(2)$ and $\mathrm{SU}(3) \mathrm{ChPT}$

About Correlated Fits

- Partially quenched data is very correlated
- With 90 measurements, we can look at correlations of pseudoscalar masses for 3 lightest, degenerate pseudoscalars

Writing $C_{i j}=\sigma_{i k} \rho_{k l} \sigma_{l j}$, we have $C_{i j}$ equal to

$$
\left(\begin{array}{ccc}
0.7673 & 0.0 & 0.0 \\
0.0 & 0.7018 & 0.0 \\
0.0 & 0.0 & 0.6466
\end{array}\right) \times 10^{-3} \times\left(\begin{array}{ccc}
1.0000 & 0.9075 & 0.7882 \\
0.9075 & 1.0000 & 0.9568 \\
0.7882 & 0.9568 & 1.0000
\end{array}\right) \times \sigma
$$

- Eigenvalues of correlation matrix show very small eigenvalues occurring

$$
\left(\begin{array}{c}
2.77 \\
0.2156 \\
0.0143
\end{array}\right)
$$

Correlations for 6 Partially Quenched Masses

$\left(\begin{array}{llllll}1.0000 & 0.9705 & 0.9157 & 0.9075 & 0.8496 & 0.7882 \\ 0.9705 & 1.0000 & 0.9818 & 0.9791 & 0.9437 & 0.8927 \\ 0.9157 & 0.9818 & 1.0000 & 0.9873 & 0.9767 & 0.9392 \\ 0.9075 & 0.9791 & 0.9873 & 1.0000 & 0.9884 & 0.9568 \\ 0.8496 & 0.9437 & 0.9767 & 0.9884 & 1.0000 & 0.9881 \\ 0.7882 & 0.8927 & 0.9392 & 0.9568 & 0.9881 & 1.0000\end{array}\right)$

- Eigenvalues now span 5 orders of magnitude
- Strong correlations mean much more data required to resolve correlation matrix accurately
5.692
0.2713
0.0254
0.0107
0.000592
0.0000312)

Fit Strategy

- A correlated χ^{2} is useful for a quantitative statement about how well our fit anzatz agrees with the data
- Strong correlations in our data make such a statement problematic
- As our dataset gets arbitrarily large, the covariance matrix will resolve and the χ^{2} will become very bad, since NLO ChPT is only accurate to a certain level for given quark masses.
- Can ask whether NLO ChPT is accurate at, for example, the 10% level for 400 MeV pseudoscalars.
- Even if NLO fits agree well with the data, how large are the NLO corrections?
- Important to include estimate of NNLO errors
- For our data, NLO fits agree well for 400 MeV pseudoscalars, but NLO terms are large, and convergence of series appears poor.

Adding Another Quantity to Fits

- Can ask about ChPT behavior of a new quantity $\left\langle\pi^{+}\right| \bar{s} d\left|K^{+}\right\rangle$
- To lowest order, we have

$$
\left\langle\pi^{+}\right| \bar{s} d\left|K^{+}\right\rangle=\frac{m_{\pi}^{2}}{2 m_{f}}=B_{0}
$$

- Aubin, Laiho, Li and Lin have calculated this to NLO
- It depends on $\mathrm{f}_{0}, \mathrm{~B}_{0}, \mathrm{~L}_{5}, \mathrm{~L}_{6}, \mathrm{~L}_{8}$

$$
\begin{aligned}
\left\langle\pi^{+}\right| \Theta^{(3, \overline{3})}\left|K^{+}\right\rangle= & -\frac{2}{f^{2}} \alpha^{(3, \overline{3})}-\frac{16 B_{0}}{f^{2}}\left\{L_{5} m_{X} m_{x z}-2 L_{8}\left(m_{X}^{2}+m_{x z}^{2}\right)\right. \\
& \left.-2 L_{6}\left(2 m_{D}^{2}+m_{S}^{2}\right)\right\}+\left\langle\pi^{+}\right| \Theta^{(3, \overline{3})}\left|K^{+}\right\rangle_{\text {logs }}
\end{aligned}
$$

- Plot results of simultaneous
fit to $\mathrm{f}_{\pi} \mathrm{m}_{\pi}$ and $\left\langle\pi^{+}\right| \bar{s} d\left|K^{+}\right\rangle$
- Can fit to pairs of these quantities
- $10-15 \%$ shift in f_{0}
- Data for $\left\langle\pi^{+}\right| \bar{s} d\left|K^{+}\right\rangle$ not well fit.
- Logs are largest for f_{π} and it may have the largest higher order corrections.

Results of fits

Fit	B_{0}	f_{0}	L_{4}	L_{5}	L_{6}	L_{8}	$\chi^{2} / d o f$
$m_{P S}^{2}\left(\right.$ fix $\left.L_{4}, L_{5}, L_{6}\right)$	$2.377(33)$	$6.3(1.0) \times 10^{-2}$	-6.7×10^{-5}	2.51×10^{-4}	-5.7×10^{-5}	$3.23(67) \times 10^{-4} 1.6(2.4) \times 10^{-1}$	
$\bar{s} d\left(\right.$ fix $\left.L_{4}, L_{5}, L_{6}\right)$	$2.374(81)$	$9.5(1.5) \times 10^{-2}$	-6.7×10^{-5}	2.51×10^{-4}	-5.7×10^{-5}	$1.46(74) \times 10^{-4}$	$1.3(1.7) \times 10^{0}$
$f_{P S}\left(\right.$ fix $\left.L_{4}, L_{5}, L_{6}\right)$	$2.44(36)$	$5.26(43) \times 10^{-2}$	-6.7×10^{-5}	2.51×10^{-4}		$5.5(9.8) \times 10^{-1}$	
$\bar{s} d$ and $m_{P S}^{2}$	$2.17(15)$	$7.56(88) \times 10^{-2}$	$-0.6(3.0) \times 10^{-1}$	$1.6(3.5) \times 10^{-3}$	$-0.3(1.5) \times 10^{-1}$	$0.9(1.8) \times 10^{-3} 5.0(5.7) \times 10^{-1}$	
$\bar{s} d$ and $m_{P S}^{2}\left(\right.$ fix $\left.L_{4}, L_{6}\right)$	$2.394(27)$	$7.24(78) \times 10^{-2}$	-6.7×10^{-5}	$2.5(2.9) \times 10^{-3}$	-5.7×10^{-5}	$1.4(1.5) \times 10^{-3} 9.3(9.2) \times 10^{-1}$	
$m_{P S}^{2}$ and $f_{P S}$	$2.33(15)$	$5.44(44) \times 10^{-2}$	$-6.4(6.2) \times 10^{-5}$	$2.0(1.2) \times 10^{-4}$	$-5.3(4.4) \times 10^{-5}$	$3.52(41) \times 10^{-4}$	$6.4(5.6) \times 10^{-1}$
$\operatorname{simu}($ all $)$	$2.13(16)$	$5.95(46) \times 10^{-2}$	$-1.10(90) \times 10^{-4}$	$2.6(1.2) \times 10^{-4}$	$-3.4(6.7) \times 10^{-5}$	$3.32(51) \times 10^{-4}$	$1.09(70) \times 10^{0}$
$m_{P S}^{2}$ and $f(\mathrm{M} \mathrm{\& E})$	$2.35(16)$	$5.41(40) \times 10^{-2}$	$-6.7(8.0) \times 10^{-5}$	$2.51(99) \times 10^{-4}-5.7(8.5) \times 10^{-5}$	$3.9(1.6) \times 10^{-4}$		

- f_{0} larger for fits not involving f_{π}
- f_{0} ranges from 0.053 to 0.095

Preliminary NNLO Fits

Bijnen's NNLO formula for m_{π}^{2} and f_{π} involve the following constants

Order	Constants	Number at order	Total number
LO	f_{0}, B_{0}	2	2
NLO	L_{i}, for $i=4,5,6,8$	4	6
NNLO	L_{i}, for $i=0,9$	10	
	K_{i}, for $i=17-23,25-27,39,40$	12	
	Two linear comb. of K_{i} not determined		
	Set $K_{39}=K_{40}=0$	10	22

From Bijnens [1], the NNLO analytic terms correcting m_{π}^{2} (for 2 valence quarks and 3 dynamical quarks) is

$$
\begin{aligned}
\delta_{\mathrm{ct}}^{(6) 23} \sim & -2 \chi_{13}^{2}\left(K_{17}^{r}+K_{19}^{r}-3 K_{25}^{r}-K_{39}^{r}\right) \\
& +\chi_{1} \chi_{3}\left(K_{19}^{r}-K_{23}^{r}-3 K_{25}^{r}\right) \\
& -6 \bar{\chi} \chi_{13}\left(K_{18}^{r}+K_{20}^{r} / 2-K_{26}^{r}-K_{40}^{r}\right) \\
& -9 \bar{\chi}^{2}\left(K_{21}^{r}+K_{22}^{r}-K_{26}^{r}-3 K_{27}^{r}\right) \\
& +6 \chi_{\pi} \chi_{\eta}\left(K_{21}^{r}-K_{26}^{r}\right),
\end{aligned}
$$

Also from Bijnens [1], the NNLO analytic terms correcting f_{π} (for 2 valence quarks and 3 dynamical quarks) is

$$
\begin{aligned}
f_{\mathrm{ct}}^{(6) 23} \sim & 2 \chi_{13}^{2} K_{19}^{r}-\chi_{1} \chi_{3}\left(K_{19}^{r}-K_{23}^{r}\right) \\
& +3 \bar{\chi} \chi_{13} K_{20}^{r}+9 \bar{\chi}^{2}\left(K_{21}^{r}+K_{22}^{r}\right) \\
& -6 \chi_{\pi} \chi_{\eta} K_{21}^{r},
\end{aligned}
$$

NNLO Preliminaries

- Using calculations of Bijnens, Danielsson and Lahde, PRD 73 (2006) 074509
- Fortran code provided by Bijnens
- Basic tests of NLO Fortran code versus other fit codes successful
- First simple attempts to assess numerical stability and graph results
- Used constrained minimizer, since there may be undamped directions in parameter space with current data set
- $A d d m_{1}=0.02$ ensemble and increase valence quark masses to 0.02

NNLO fit to f_{π}

NNLO fit to m_{π}^{2}

Table 3: Values for NLO and NNLO constants. For NLO, all masses less than 0.01 were used in fit. For NNLO, all masses less than 0.02 were used. These results are very preliminary.

Using NNLO values in NLO fit to f_{π}

Using NNLO values in NLO fit to m_{π}

 m_{π}^{2} - data and fit

Summary

- $\mathrm{SU}(3) \mathrm{ChPT}$ fits our data well for pseudoscalar masses below 400 MeV
- Accuracy near the kaon mass scale is not good, and is even worse for $\Delta \mathrm{S}=1$ matrix elements needed for non-leptonic kaon decays
- Adding $\left\langle\pi^{+}\right| \bar{s} d\left|K^{+}\right\rangle$into the simultaneous fits indicates higher order terms are important
- Preliminary NNLO fits show LO parameters varying in range expected from NLO fits to $\mathrm{m}_{\pi} \mathrm{f}_{\pi}$ and $\left\langle\pi^{+}\right| \bar{s} d\left|K^{+}\right\rangle$
- New data on 32^{3} will provide more data for NNLO fits and continued investigation into convergence of $\mathrm{SU}(3)$.

