Introduction

 c_{SW}

K_C

r₀ sca

Conclusions

Clover improvement for stout-smeared 2 + 1 flavour SLiNC fermions: non-perturbative c_{sw} results

M. Göckeler, R. Horsley, T. Kaltenbrunner, A. D. Kennedy, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow, G. Schierholz, A. Schiller, H. Stüben, J. M. Zanotti

> - QCDSF-UKQCD Collaboration - Regensburg - Munich - Edinburgh - DESY - Leipzig - Liverpool - ZIB-FU (Berlin)

> > [Lattice 2008, Williamsburg, USA]

Introduction	O(a) Improvement	The SLiNC action	c_{SW}	ĸc	Z_V	r ₀ scale	Conclusions

- O(a) Improvement
- The SLiNC action
- C_{SW}
- *κ*_c
- Z_V
- r₀ scale
- Conclusions

Introduction

- Gluon action has O(a²) corrections
- Naive fermion action has $O(a^2)$ corrections, but
 - Introduces 'doubling problem' 'Cure'

action = naive + Wilson mass term

but has O(a) corrections, so eg

$$\frac{m_H}{m_{H'}} = \# + \# O(a)$$

Symanzik:

- Systematic improvement to O(aⁿ) Add basis of irrelevant operators and tune coefficients to remove completely $O(a^{n-1})$ effects Asymptotic series ??
- Restrict to on-shell \Rightarrow equation of motion reduce the set of operators
 - in action
 - in matrix elements
- O(a) improvement \Rightarrow only one additional operator in action required

$$\mathcal{L}_{\textit{addit}} \propto \textit{ac}_{\textit{sw}}(g_0^2) \sum \overline{\psi} \sigma_{\mu
u} F_{\mu
u} \psi = ext{clover term}$$

n = 2

If can improve one on-shell quantity to $O(a^2)$:

- Fixes $c_{sw}(g_0^2)$
- Then all other physical on-shell quantities are automatically improved to $O(a^2)$, ie

$$rac{m_H}{m_{H'}} = \# + \# O(a^2)$$

Matrix Elements:

• Require additional O(a) operators, for example

$$egin{array}{rcl} \mathcal{A}_{\mu} &=& (1+b_{\mathcal{A}}am_q)(\mathcal{A}_{\mu}+c_{\mathcal{A}}a\partial_{\mu}^{\scriptscriptstyle L\!AT}P)\,, \ \mathcal{P} &=& (1+b_{\mathcal{P}}am_q)P \end{array}$$

with

$$A_{\mu} = \overline{q} \gamma_{\mu} \gamma_5 q , \qquad P = \overline{q} \gamma_5 q$$

Introduction	O(a) Improvement	The SLiNC action	c_{SW}	Кc	Z_V	r ₀ scale	Conclusions
PCA	C:						

• Find quark mass m_q^{WI} from *PCAC* relation

$$m_{qR}^{WI} = \underbrace{\frac{Z_A(1+b_A a m_q)}{Z_P(1+b_P a m_q)}}_{\text{numerical factor}} m_q^{WI} \qquad m_q^{WI} = \frac{\langle \partial_0^{\mu \pi} (A_4(x_0) + c_A a \partial_0^{\mu \pi} P(x_0)) O \rangle}{2 \langle P(x_0) O \rangle}$$

- Choosing different { boundary conditions, O } gives different determinations of quark mass m_q^{(i) wi}, i = 1, 2...
- If improved then errors are O(a²).
 So find improvement coefficients, c_{sw},..., by determining point where

 C_{SW}

ĸ

r₀ sc

Conclusions

ALPHA Collaboration:

- Achieve this by means of 'Schrödinger Functional'
- Dirichlet boundary conditions on time boundaries:
 - Gluons fields fixed \Longrightarrow constant chromo-electric background field
 - Can simulate with $m_q \sim$ 0 with no zero mode problems
 - Quark fields fixed \Longrightarrow sinks/sources $(\rho, \overline{\rho})$
 - for correlation functions can then choose $ho,\overline{
 ho}\in {\cal O},$ eg

 $O^{(i)} = \sum_{\vec{y}, \vec{z}} \overline{\rho}^{(i)}(\vec{y}) \gamma_5 \rho^{(i)}(\vec{z}) \qquad \begin{cases} i = 1 \text{ lower boundary } x_0 = 0\\ i = 2 \text{ upper boundary } x_0 = T \end{cases}$

so can look at PCAC behaviour at different distances from boundary

• Redefine quark mass (slightly, but coincides to $O(a^2)$ in improved theory) to eliminate (unknown) c_A $(m_q^{w_l} \rightarrow M)$ Aim for improvement when

 $(M, \Delta M) = (0, 0)$ giving $c^*_{sw}, \kappa^*_c \dots$

where

$$M \equiv M^{(1)} \qquad \Delta M \equiv M^{(1)} - M^{(2)}$$

ZV

Conclusions

In a little more detail

$$m_q^{(i) w_i} = r^{(i)}(x_0) + c_A s^{(i)}(x_0) \qquad i = 1, 2$$

with

$$r^{(i)}(x_0) = \frac{\partial_0^{LAT} r_A^{(i)}(x_0)}{2r_P^{(i)}(x_0)} \qquad s^{(i)}(x_0) = a \frac{\partial_0^{2LAT} r_P^{(i)}(x_0)}{2r_P^{(i)}(x_0)}$$

where

$$\begin{split} f_A^{(1)}(x_0) &= -\frac{1}{3} \langle A_0(x_0) O^{(1)} \rangle & f_P^{(1)}(x_0) &= -\frac{1}{3} \langle P(x_0) O^{(1)} \rangle \\ f_A^{(2)}(\mathcal{T} - x_0) &= +\frac{1}{3} \langle A_0(x_0) O^{(2)} \rangle & f_P^{(2)}(\mathcal{T} - x_0) &= -\frac{1}{3} \langle P(x_0) O^{(2)} \rangle \end{split}$$

$$\mathcal{O}^{(i)} = \sum_{\vec{y},\vec{z}} \overline{\rho}^{(i)}(\vec{y}) \gamma_5 \rho^{(i)}(\vec{z}) \qquad \begin{cases} i = 1 \text{ lower boundary } x_0 = 0\\ i = 2 \text{ upper boundary } x_0 = T \end{cases}$$

Redefine quark mass (slightly, coincides to $O(a^2)$ in improved theory) to eliminate (unknown) c_A :

$$M^{(i)}(x_0, y_0) = r^{(i)}(x_0) - \hat{c}_A s^{(i)}(x_0) \qquad \hat{c}_A = -\frac{r^{(1)}(y_0) - r^{(2)}(y_0)}{s^{(1)}(y_0) - s^{(2)}(y_0)}$$

 $M \equiv M^{(1)}(T/2, T/4)$ $\Delta M \equiv M^{(1)}(3T/4, T/4) - M^{(2)}(3T/4, T/4)$

Introduction	O(a) Improvement	The SLiNC action	C _{SW}	К _С	Z_V	r ₀ scale	Conclusions
Aim	for						
	$(M, \Delta I)$	(M) = (0, 0)	giving	C_{sw}^*, κ_c^*			

(Small) Ambiguities

• Infinite volume expect $O(a^2 \Lambda_{QC}^2)$

in chiral limit, otherwise additional $O(a^2 m_q^2)$ term

 $L_s = aN_s$

• Finite volume additional $O(a^2/L_s^2)$

So

- $O(a^2 \Lambda_{_{QCD}}^2)
 ightarrow 0$ as a (or $g_0^2)
 ightarrow 0$
- $O(a^2/L_s^2) \sim O(1/N_s^2) \not\rightarrow 0$
 - Keep L_s fixed in physical units as $a \to 0$ (but then fine tuning for β), 'constant physics condition': $O(a^2/L_s^2) \to 0$
 - Simulate for several values of N_s and extrapolate to $N_s \to \infty$: $O(a^2/L_s^2) \sim O(1/N_s^2) \to 0$
 - Poor man's solution: Simulate at $\beta = \infty$ and subtract $O(1/N_s^2)$ terms Practically, does it matter?
 - *c_{sw}* negligble
 - Z_V, a 1% effect

C_{SW}

ĸc

r₀ sca

Conclusions

SLiNC fermions 2 + 1 flavours

Stout LinkNon-perturbative Clover = SLiNC

$$S_{F} = \sum_{x} \left\{ \kappa \overline{\psi}(x) \tilde{U}_{\mu}(x+\hat{\mu}) [\gamma_{\mu}-1] \psi(x-\hat{\mu}) - \kappa \overline{\psi}(x) \tilde{U}_{\mu}^{\dagger}(x-\hat{\mu}) [\gamma_{\mu}+1] \psi(x+\hat{\mu}) \right. \\ \left. + \overline{\psi}(x) \psi(x) + \frac{1}{2} c_{sw}(g_{0}^{2}) \overline{\psi}(x) \sigma_{\mu\nu} F_{\mu\nu}(x) \psi(x) \right\}$$

• The hopping terms use a stout smeared link ('fat link')

Dirac kinetic term and Wilson mass term

$$\begin{split} \tilde{U}_{\mu} &= \exp\{iQ_{\mu}(x)\} \ U_{\mu}(x) \\ Q_{\mu}(x) &= \frac{\alpha}{2i} \left[VU^{\dagger} - UV^{\dagger} - \frac{1}{3} \mathrm{Tr}(VU^{\dagger} - UV^{\dagger}) \right] \end{split}$$

 V_{μ} is the sum of all staples around U_{μ}

 Clover term built from thin links (already length 4a do not want fermion matrix too extended)

Why stout smearing?

- Need smearing at present lattice spacings
- Analytic
 - can take derivative (so HMC force well defined)
 - perturbation expansions

To complete action:

• Gluon action: Symanzik tree-level (plaquette + rectangle)

$$S_{G} = \frac{6}{g_{0}^{2}} \left\{ c_{0} \sum_{Plaquette} \frac{1}{3} \operatorname{Re} \operatorname{Tr}(1 - U_{Plaquette}) + c_{1} \sum_{Rectangle} \frac{1}{3} \operatorname{Re} \operatorname{Tr}(1 - U_{Rectangle}) \right\}$$

with

$$\beta = \frac{6c_0}{g_0^2} = \frac{10}{g_0^2}$$
 with $c_0 = \frac{20}{12}$, $c_1 = -\frac{1}{12}$

Programme:

- Chroma R. Edwards and B. Joo, arXiv:hep-lat/0409003 [for BG/L additions P.A. Boyle, http://www.ph.ed.ac.uk/~paboyle/bagel/Bagel.html]
- SF details follow T. Klassen, arXiv:hep-lat/9705025
- Practically:
 - 'Mild smearing' $\alpha = 0.1$
 - $8^3 \times 16$ lattices
 - T. Kaltenbrunner initiated investigation

M = 0 gives $\Delta M(c_{sw}, \kappa_c(c_{sw}))$

 $\Delta M = 0$ gives c^*_{sw}

Introduction

Conclusions

$$c_{sw}^{\mathcal{T}I} = \frac{u_0^s}{u_0^4}$$
 of $c_{sw}^{\mathcal{T}I} = \frac{1}{u_0^3}$

 κ_c

M = 0 gives $\kappa_c(c_{sw})$

 $\Delta M = 0$ gives κ_c^*

r₀ scale

Conclusions

CVC gives (in chiral limit)

$$Z_V = \frac{f_1}{f_V(x_0)} \qquad f_1 = -\frac{1}{3} \langle O^{(2)} O^{(1)} \rangle \quad f_V(x_0) = \frac{i}{6} \langle O^{(2)} \sum_{\vec{x}} V_0(x) O^{(1)} \rangle$$

M = 0 gives $Z_{Vc}(\kappa_c(c_{sw}))$ $\Delta M = 0$ gives Z_V^*

Introduction	O(a) Improvement	The SLiNC action	c _{SW}	ĸc	Z_V	r _O scale	Conclusions

Introduction	O(a) Improvement	The SLiNC action	C_{SW}	ĸc	Z_V	r ₀ scale	Conclusions

Scales

- What is a sensible region to work in?
- Short runs on $16^3 \times 32$ lattices:

(β,κ)	r ₀ /a	а
(7.20, 0.1230)	9.00	$0.056\mathrm{fm}\equiv(3.55\mathrm{GeV})^{-1}$
(6.50, 0.1240)	7.55	$0.066{ m fm}\equiv(2.98{ m GeV})^{-1}$
(6.00, 0.1225)	7.00	$0.071{ m fm}\equiv(2.76{ m GeV})^{-1}$

3-flavour run r_0/a results using scale $r_0 = 0.500 \text{ fm} = (394.6 \text{ MeV})^{-1}$.

- Improvement (an asymptotic series) wins for smaller a, say $a \leq 0.1\,{\rm fm}$

Either:

- Small a with 'large' mps no continuum extrapolation but chiral extrapolation
- 'Coarse' a with m_{ps} ~ m_π no chiral extrapolation but continuum extrapolation
- Mixture

Introduction	O(a) Improvement	The SLiNC action	c_{SW}	ĸc	Z_V	r _O scale	Conclusions

Conclusions

- O(a) improvement works for (stout) smeared actions
- Typical clover results obtained
 - as a decreases need a significant $c_{sw} \gg c_{sw}^{tree} \equiv 1$ for O(a) improvement
 - Seeking/have found a region where $a\sim 0.05\,-\,0.1\,{
 m fm}$