The $B \rightarrow \pi \ell \nu$ form factor and $|V_{ub}|$ from unquenched lattice QCD

Ruth Van de Water for the Fermilab Lattice and MILC Collaborations

> Lattice 2008 July 27, 2008

Outline

- I. Introduction: $B \rightarrow \pi \ell \nu$, $|V_{ub}|$, & new physics
- II. Lattice simulation details: actions and parameters
- III. Lattice calculation of the $B{\rightarrow}\pi\ell\nu$ form factor
 - Chiral-continuum extrapolation with staggered chiral perturbation theory
 - Systematic error budget
- IV. Determination of $|V_{ub}|$
 - Model-independent z-parameterization of form factors
 - Combined z-fit of lattice and 12-bin BABAR data
- V. Conclusions
 - + Comparison of $|V_{ub}|$ with other determinations
 - Future plans

Why study $B \rightarrow \pi \ell \nu$?

• Decay parameterized by two form factors, $f_+(q^2)$ and $f_0(q^2)$:

$$\langle \pi(p_{\pi}) | \mathcal{V}^{\mu} | B(p_{B}) \rangle = f_{+}(E_{\pi}) \Big[p_{B} + p_{\pi} - \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q \Big]^{\mu}$$
$$+ f_{0}(E_{\pi}) \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}$$

 Experiments measure the differential decay rate -- can use to extract form factor shapes:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} [(m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2]^{3/2} |f_+(q^2)|^2$$

 Lattice QCD calculations needed to determine normalization and extract the CKM matrix element |Vub|

R. Van de Water

|Vub| and the CKM unitarity triangle

• $|V_{ub}|$ constrains the apex $(\overline{\rho}, \overline{\eta})$ of the unitarity triangle:

$$\frac{|V_{ub}|}{|V_{cb}|} = \frac{\lambda}{1 - \frac{\lambda^2}{2}} \sqrt{\overline{\rho}^2 + \overline{\eta}^2}$$

- $\lambda = |V_{us}|$ known to ~1%
- $|V_{cb}|$ known to ~2%
- Width of green error ring currently dominated by ~10-15% uncertainty in |V_{ub}|
- $sin(2\beta)$ currently constrains the height to better than ???% and is still improving
- ← ∴ A precise determination of $|V_{ub}|$ will allow a strong test of CKM unitarity

and sensitive probe of new physics

Lattice calculation of the $B \rightarrow \pi \ell \nu$ semileptonic form factor

Light quark and heavy quark actions

- MILC 2+1 flavor gauge configurations [Phys.Rev.D70:114501,2004]
 - Symanzik improved gluon action
 - Asqtad-improved staggered light (up,down) quark action
 - Multiple light quark masses down to m_s/10 and two lattice spacings

$a(\mathrm{fm})$	L	am_l/am_s	am_{π}	# configs.
0.09	28	0.0062/0.031	$0.14856(^{+49}_{-46})$	557
0.09	28	0.0124/0.031	$0.20655(^{+45}_{-46})$	534
0.12	24	0.005/0.05	$0.15514(^{+28}_{-27})$	529
0.12	20	0.007/0.05	$0.18341(^{+25}_{-29})$	836
0.12	20	0.01/0.05	$0.21731(^{+29}_{31})$	592
0.12	20	0.02/0.05	$0.30198(^{+29}_{-29})$	460

Clover-improved action with Fermilab interpretation for b-quark

- Adjust hopping parameter to reproduce experimental B_s meson mass
- Adjust bare quark mass and clover coefficient to mach lattice action onto continuum HQET action through O(1/m_Q) such that leading errors scale as O (α_s Λ/m_Q)

Heavy-light currents

- To calculate the B $\rightarrow \pi \ell v$ form factor we compute 3-point functions of the temporal and spatial vector currents: $\langle \pi | \hat{V}_{\mu} | B \rangle$
 - We remove the leading heavy quark discretization effect by rotating the heavy quark field
- We multiply the lattice amplitude by the appropriate renormalization factor to get the continuum one:

$$\langle \pi | V_{\mu} | B \rangle = Z_{V_{\mu}}^{hl} \times \langle \pi | \widehat{V}_{\mu} | B \rangle \qquad Z_{V_{\mu}}^{bl} = \rho_{V_{\mu}} (Z_V^{bb} Z_V^{ll})^{1/2}$$

The Z-factors are computed **nonperturbatively**:

$$Z_V^{qq} \times \langle B(0) | \overline{\psi}_q \gamma_0 \psi_q | B(0) \rangle = 1 \qquad (q = b, l)$$

The correction factor, ρ, is a ratio expected to be close to 1 and is calculated to 1-loop in lattice perturbation theory:

$$\rho_{V_{\mu}} \equiv Z_{V_{\mu}}^{bl} / (Z_V^{bb} Z_V^{ll})^{1/2}$$

This analysis was **BLINDED**: an unknown offset was put into the ρ -factors and not revealed until the central value and error budget for $|V_{ub}|$ were finalized \star

Current status of lattice calculations

- Only two unquenched 2+1 flavor calculations of the $B \rightarrow \pi \ell \nu$ form factor:
 - Both use the MILC gauge configurations
 - Fermilab-MILC uses Fermilab quarks [arXiv:hep-lat/0510113]
 - HPQCD uses nonrelativistic (NRQCD) heavy quarks [Phys.Rev.D73:074502,2006, Erratum-ibid.D75:119906,2007]
- The analysis procedure is similar for both groups
 - In both cases, it is a four-step procdure
 - ✤ We improve upon the the analysis method in all four steps . . .

Improvements over previous calculations: I

(1) Previous unquenched analyses first interpolate and extrapolate lattice data using the BK parameterization which builds in the B^{*} pole to get the form factors $f_{||}$ and f_{\perp} at fiducial values of E_{π}^2

 This builds in model-dependence at the very first step of the analysis

(2) Next they extrapolate lattice data separately at each value of E_{π}^2 to physical light quark mass using staggered χ PT [Lee & Sharpe, Aubin & Bernard, Sharpe & RV]

 This does not enforce the condition that the low-energy constants must be the same at all pion energies

Improvements over previous calculations: I

(1) Previous unquenched analyses first interpolate and extrapolate lattice data using the BK parameterization which builds in the B^{*} pole to get the form factors $f_{||}$ and f_{\perp} at fiducial values of E_{π}^2

 This builds in model-dependence at the very first step of the analysis

(2) Next they extrapolate lattice data separately at each value of E_{π}^2 to physical light quark mass using staggered χ PT [Lee & Sharpe, Aubin & Bernard, Sharpe & RV]

 This does not enforce the condition that the low-energy constants must be the same at all pion energies

 \star We perform a simultaneous fit to all data (m_q, E_π) using rSχPT \star

Improvements to previous calculations: II

(3) Then previous analyses interpolate and extrapolate in q^2 again using the BK parameterization to determine the continuous function $f_+(q^2)$

(4) Last they combine $f_+(q^2)$ with the experimentally-measured $B \rightarrow \pi \ell \nu$ branching fraction and B-meson lifetime and integrate over q^2 to get $|V_{ub}|$:

$$\Gamma(q_{\min})/|V_{ub}|^2 = \int_{q_{\min}^2}^{q_{\max}^2} dq^2 (d\Gamma/dq^2)/|V_{ub}|^2$$

- This again introduces model dependence through the choice of fit function for the q² extrapolation
- It also increases the total uncertainty in |Vub|by combining the lattice and experimental results in a non-optimal way

Improvements to previous calculations: II

(3) Then previous analyses interpolate and extrapolate in q^2 again using the BK parameterization to determine the continuous function $f_+(q^2)$

(4) Last they combine $f_+(q^2)$ with the experimentally-measured $B \rightarrow \pi \ell \nu$ branching fraction and B-meson lifetime and integrate over q^2 to get $|V_{ub}|$:

$$\Gamma(q_{\min})/|V_{ub}|^2 = \int_{q_{\min}^2}^{q_{\max}^2} dq^2 (d\Gamma/dq^2)/|V_{ub}|^2$$

- This again introduces model dependence through the choice of fit function for the q² extrapolation
- It also increases the total uncertainty in |Vub|by combining the lattice and experimental results in a non-optimal way

***** We perform a **simultaneous fit to lattice and experimental data** using the **model-independent z-parameterization** for the form factor *****

Staggered χ PT for heavy-light form factors

 In the B-meson rest frame it is easiest to calculate the form factors f₁₁ and f_⊥: $f_{||}(E_{\pi}) = \langle \pi | V^0 | B \rangle / \sqrt{2m_B}$ $f_{\perp}(E_{\pi}) p_i = \langle \pi | V^i | B \rangle / \sqrt{2m_B}$

+ The NLO staggered χ PT expressions for $f_{||}$ and f_{\perp} are [Aubin & Bernard]:

 $f_{\parallel,\perp} = c_0 \left[1 + \text{chiral logs} + c_1 m_l + c_2 (2m_u + m_s) + c_3 E_\pi + c_4 E_\pi^2 + c_5 a^2 + \right] + \mathcal{O}(m_q^2, E_\pi^3)$

- These expressions come from an expansion in E_{π} , which is ≈ 1 GeV for our highest-momentum data points that have lattice momentum ap=(1,1,1)
 - Although this is clearly beyond the range of χPT, rSχPT provides the only theoretically-motivated extrapolation formulae that we have
 - We therefore add NNLO analytic terms to allow us to fit our entire data set
- Because our statistical errors are large, however, we cannot rule out a simple polynomial fit, and we use the difference from the preferred rS_χPT fit to estimate the fitting systematic uncertainty

Chiral-continuum extrapolations of $f_{||}$ and f_{\perp}

+ Correlated simultaneous fit to all f_{\perp} data using NLO rS_{χ}PT

- + Separate correlated fit to all $f_{||}$ data using NLO rS χ PT plus NNLO analytic terms
- Cyan curves show continuum-chiral extrapolated form factors with stat. errors

R. Van de Water

Errors shown for a representative value of $q^2\,$

source	$f_+(25 \text{ GeV}^2)$
statistics	8%
chiral-cont. extrapolation	7%
discretization effects	4%
matching heavy-light currents	3%
m_b uncertainty	2%
\hat{m}, m_s uncertainty	1%
g_{π} uncertainty	1%
total	12%

Note that the form factor **f_ contributes > 80% of f_**+

for all values of q²

 Compare preferred rS_χPT fit result with alternative polynomial fit

Errors shown for a representative value of $q^2 \end{tabular}$

source	$f_+(25 \text{ GeV}^2)$
statistics	8%
chiral-cont. extrapolation	7%
discretization effects	4%
matching heavy-light currents	3%
m_b uncertainty	2%
\hat{m}, m_s uncertainty	1%
g_{π} uncertainty	1%
total	12%

Note that the form factor **f_ contributes > 80% of f_**+

- Compare preferred rS_χPT fit result with alternative polynomial fit
- Estimate with power-counting

Errors shown for a representative value of $q^2 \end{tabular}$

source	$f_+(25 \text{ GeV}^2)$
statistics	8%
chiral-cont. extrapolation	7%
discretization effects	4%
matching heavy-light currents	3%
m_b uncertainty	2%
\hat{m}, m_s uncertainty	1%
g_{π} uncertainty	1%
total	12%

Note that the form factor **f_ contributes > 80% of f_**+

- Compare preferred rSχPT fit result with alternative polynomial fit
- Estimate with power-counting
- Statistical errors in Z_V^{bb} and Z_V^{II} plus estimate of higher-order corrections to ρ^{bl}

Errors shown for a representative value of $q^2\,$

source	$f_+(25 \text{ GeV}^2)$
statistics	8%
chiral-cont. extrapolation	7%
discretization effects	4%
matching heavy-light currents	3%
m_b uncertainty	2%
\hat{m}, m_s uncertainty	1%
g_{π} uncertainty	1%
total	12%

Note that the form factor **f_ contributes > 80% of f_**+

Systematic errors in f+

- Compare preferred rSχPT fit result with alternative polynomial fit
- Estimate with power-counting
- Statistical errors in Z_V^{bb} and Z_V^{II} plus estimate of higher-order corrections to ρ^{bl}
- Vary κ_b over uncertainty in tuning to B_s meson mass

Errors shown for a representative value of $q^2 \end{tabular}$

source	$f_+(25 \text{ GeV}^2)$
statistics	8%
chiral-cont. extrapolation	7%
discretization effects	4%
matching heavy-light currents	3%
m_b uncertainty	2%
\hat{m}, m_s uncertainty	1%
g_{π} uncertainty	1%
total	12%

Note that the form factor **f_ contributes > 80% of f_**+

Systematic errors in f+

- Compare preferred rSχPT fit result with alternative polynomial fit
- Estimate with power-counting
- Statistical errors in Z_V^{bb} and Z_V^{II} plus estimate of higher-order corrections to ρ^{bl}
- Vary κ_b over uncertainty in tuning to B_s meson mass
- Vary continuum light quark masses over range determined by MILC light pseudoscalar meson fits

Errors shown for a representative value of $q^2\,$

source	$f_+(25 \text{ GeV}^2)$
statistics	8%
chiral-cont. extrapolation	7%
discretization effects	4%
matching heavy-light currents	3%
$m_{\rm b}$ uncertainty	2%
$(\hat{m}, m_s \text{ uncertainty})$	1%
g_{π} uncertainty	1%
total	12%

Note that the form factor **f_ contributes > 80% of f_**+

Systematic errors in f+

- Compare preferred rSχPT fit result with alternative polynomial fit
- Estimate with power-counting
- Statistical errors in Z_V^{bb} and Z_V^{II} plus estimate of higher-order corrections to ρ^{bl}
- Vary κ_b over uncertainty in tuning to B_s meson mass
- Vary continuum light quark masses over range determined by MILC light pseudoscalar meson fits
- Vary g_π, the B-B^{*}-π coupling, over range determined by fits to experimental D-decay data

Errors shown for a representative value of $q^2\,$

source	$f_+(25 \text{ GeV}^2)$
statistics	8%
chiral-cont. extrapolation	7%
discretization effects	4%
matching heavy-light currents	3%
m_b uncertainty	2%
\hat{m}, m_s uncertainty	1%
g_{π} uncertainty	1%
total	12%

Note that the form factor **f_ contributes > 80% of f_**+

Full error budget for f₊

• Preserve correlations between q^2 bins for later determination of $|V_{ub}|$

$q^2 \; (\text{GeV}^2)$	26.46	25.59	24.72	23.84	22.97	22.1	21.23	$2\ 0.35$	19.48
statistics	11.74	9.58	7.93	6.97	6.74	7.04	7.57	8.13	8.66
χPT fit ansatz	6.58	6.06	6.59	7.26	7.81	8.23	8.6	9.03	9.6
g_{π} uncertainty	0.44	0.72	1.42	2.0	2.32	2.38	2.25	2.01	1.75
finite volume errors	0.08	0.1	0.03	0.14	0.4	0.68	0.86	0.76	0.13
scale uncertainty	0.0	0.28	0.48	0.62	0.74	0.84	0.95	1.06	1.19
\hat{m} uncertainty		0.18	0.18	0.19	0.21	0.22	0.24	0.27	0.29
$m_{strange}$ uncertainty		0.6	0.61	0.64	0.69	0.75	0.83	0.92	1.03
m_b uncertainty		1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
light quark and gluon discretization errors		2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
heavy quark discretization errors		2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
p-dependent discretization errors		2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
nonperturbative Z_V determinations		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
perturbative ρ determination	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
total systematic		8.43	8.91	9.54	10.05	10.42	10.71	11.02	11.45

The $B \rightarrow \pi \ell \nu$ form factors f_+ and f_0

+ For f_+ (the form factor measured by experiments), about 12% errors for all q^2

R. Van de Water

Determination of |Vub|

Exclusive determination of $|V_{ub}|$ from $B \rightarrow \pi \ell \nu$

THE PROBLEM:

 Traditional lattice QCD methods can only accurately calculate form factors at high q² (low E_π²)

CURRENT "SOLUTIONS":

- 1. Accept lattice limitations and only compare lattice and experiment in the region where lattice data exists -- extremely conservative
- Use a model which contains shape information (e.g. BK parameterization) to extrapolate lattice data to zero q² -- difficult to quantify systematic errors due to choice of model
- 3. Generate lattice data at lower using an alternative method such as Moving NRQCD [Foley et. al.] -- requires additional work

... is this the best we can do?

... or can we get more information about the form factors from the lattice data we already have without introducing model dependence?

Analytic structure of semileptonic form factors

• $f(q^2)$ analytic except when $q^2=m^2$ of a physical state:

- Therefore f(q²) analytic below the production region except at the B* pole
- Analytic functions can always be written as convergent power series how can we use this?

[images courtesy of R. Hill]

A better variable for semileptonic form factors

 Consider mapping the variable q² onto a new variable, z, in the following way: z =

$$=\frac{\sqrt{1-q^2/t_+}-\sqrt{1-t_0/t_+}}{\sqrt{1-q^2/t_+}+\sqrt{1-t_0/t_+}}$$

- Can choose the free parameter t₀ to make the maximium |z| in the semileptonic region as small as possible -- we choose 0.65 t₋
- For semileptonic decays this maps the physical region, o < t < t., onto:

B→
$$\pi\ell\nu$$
: -0.34 < z < 0.22
D→ $\pi\ell\nu$: -0.17 < z < 0.16
D→K $\ell\nu$: -0.04 < z < 0.06
B→D $\ell\nu$: -0.02 < z < 0.04

z-expansion of semileptonic form factors

In terms of z, form factors have simple form:

 $P(t)\phi(t,t_0)f(t) = \sum_{k=0}^{\infty} a_k(t_0)z(t,t_0)^k$ Vanishes at subthreshold (e.g. B*) poles "Arbitrary" analytic function -choice only affects particular values of coefficients (a's)

Unitarity constrains the size of the coefficients:

 Thus, in combination with the small range of |z|, one needs only a small number of parameters to obtain the form factors to a high degree of accuracy

Effect of z-remapping on $B \rightarrow \pi \ell \nu$ form factor

- Curvature in data due to well-understood perturbative QCD effects
- Data completely described by a normalization and a slope, and constrains the size of possible curvature

12-bin BABAR determination of $B \rightarrow \pi \ell \nu$

- In 2007 BABAR published the best determination of the shape of the B→πlv form factor yet with measurements in 12 separate q² bins [cite]
- This suggests that lattice QCD need only provide a precise normalization at one q² value in order to determine | Vub |

 In order to minimize the error in |V_{ub}|, however, we propose a slightly more sophisticated approach for combining lattice and experimental data . . .

The program for lattice and experiment

- 1. Fit experimental and lattice data in terms of z expansion
- 2. Determine and compare the slopes (and curvature) in z
- 3. If consistent, fit lattice and experimental data simultaneously with an unknown relative offset to determine $|V_{ub}|$

ADVANTAGES TO THIS APPROACH:

- Model-independent
- Can quantify the agreement between lattice and experiment using slope measurements
- Systematically improvable -- as data gets more precise can add more terms in z
- Minimizes error in [Vub] by using all of the lattice and experimental data in a single fit

... but does it work???

Consistency check: separate z-fits

lattice $P\Phi F_+$

BABAR $|V_{ub}| \times P\Phi F_+$

- Lattice data determines both the slope and curvature
- Experimental data consistent with zero curvature
- Lattice and experimental slope and curvature agree within uncertainties

⇒ Proceed to simultaneous fit of lattice and experimental data

Simultaneous z-fit to determine |Vub|

 Fit lattice and 12-bin BABAR experimental data together to z-expansion leaving relative normalization factor (|Vub|) as a free parameter

Simultaneous fit in standard variables

Preliminary result for |V_{ub}|

Consistent with exclusive determinations from 2+1 flavor lattice QCD

- Error in [V_{ub}] reduced primarily by combined z-fit to lattice and experimental data
- Approximately 2- σ below inclusive determinations

Summary and outlook

- We have calculated the $B \rightarrow \pi \ell v$ form factor f₊(q²) in 2+1 flavor lattice QCD
 - Extrapolated data to the continuum limit and physical quark masses with simultaneous fit to all f_{II} (f₁) data using rSxPT expressions
- Exclusive determination of |V_{ub}| limited by the ability of lattice QCD to accurately calculate form factors at low q²
 - Typically dealt with by using a model to input information about the shape of f₊(q²) versus. q² -- this introduces unknown systematic error
 - Analyticity, unitarity, and heavy quark physics can be combined to constrain the shape of semileptonic form factors in a model-independent way using only a small number of fit parameters
- We have determined [V_{ub}] to ~12% accuracy with a simultaneous fit to the lattice and 12-bin BABAR data using the z-expansion
 - * With this method, can extract $|V_{ub}|$ to improved accuracy using the lattice $B \rightarrow \pi \ell \nu$ form factor numerical data that we already have!!!