σ-resonance and convergence of chiral perturbation theory

D. J. Cecile and S. Chandrasekharan Duke University

Reference: Phys.Rev. D77, 091501(R) (2008)

Motivation

- Region in quark mass where chiral perturbation theory is valid is an important question for QCD
- The role of resonances is particularly interesting
- The problem is non-perturbative
- Not many first principles studies exist
- We build a model of pions very similar to QCD and study the physics of the σ-resonance in it.

Model

Action

$$S = -\sum_{x} \sum_{\mu=1}^{d+1} \eta_{\mu,x} \left[e^{i\phi_{\mu,x}} \overline{\psi}_{x} \psi_{x+\hat{\mu}} - e^{-i\phi_{\mu,x}} \overline{\psi}_{x+\hat{\mu}} \psi_{x} \right] - \sum_{x} \left[m \overline{\psi}_{x} \psi_{x} + \frac{\tilde{c}}{2} \left(\overline{\psi}_{x} \psi_{x} \right)^{2} \right]$$
strongly coupled U(1) gauge theory
$$\text{mass} \quad \text{Anomaly}$$

$$\psi_x = \begin{pmatrix} u_x \\ d_x \end{pmatrix} \qquad \overline{\psi}_x = \begin{pmatrix} u_x \\ d_x \end{pmatrix} \qquad \begin{pmatrix} \eta_{\mu,x} \end{pmatrix}^2 = 1, \mu = 1, 2, 3, 4$$

$$\begin{pmatrix} \eta_{5,x} \end{pmatrix}^2 = T$$

$$\left(\eta_{\mu,x}\right)^2 = 1, \mu = 1, 2, 3, 4$$

$$\left(\eta_{5,x}\right)^2 = T$$

fictitious temperature

Model has symmetries of N=2 QCD

Observables

current-current susceptibility

$$Y_i = \frac{1}{dL^d} \left\langle \sum_{\mu=1}^d \left(\sum_x J^i_{\mu}(x) \right)^2 \right\rangle$$

Vector Current: $J^{v}_{\mu}(x) \longrightarrow Y_{v}$

Chiral Current: $J_{\mu}^{c}(x) \longrightarrow Y_{c}$

condensate susceptibility

$$\chi_{\sigma} = \frac{1}{L^d} \frac{1}{Z} \frac{\partial^2 Z}{\partial m^2}$$

ε-regime results

Parameters

$$m=0,$$

$$\tilde{c} = 0.3,$$

$$m = 0,$$
 $\tilde{c} = 0.3,$ $T = 1.7,$ $L_5 = 2$

$$L_5 = 2$$

$$Y_c = Y_v = \frac{F^2}{2} \left(1 + \frac{0.14046}{(FL)^2} + \frac{a}{(FL)^4} \right)$$

$$F = 0.2327(1)$$

$$a = 1.91(9)$$

$$\chi^2/DOF = 1.2$$

ε-regime results

Parameters

$$m=0,$$

$$\tilde{c} = 0.3$$
,

$$m = 0,$$
 $\tilde{c} = 0.3,$ $T = 1.7,$ $L_5 = 2$

$$L_5 = 2$$

$$\chi_{\sigma} = \frac{\Sigma^{2} L^{4}}{4} \left(1 + \frac{0.42138}{(FL)^{2}} + \frac{b}{(FL)^{4}} \right)$$

$$\Sigma = 0.4346(2)$$

$$b = 1.72(11)$$

$$\chi^2/DOF = 0.2$$

p-regime results

Finite size predictions at a fixed quark mass

$$\begin{split} Y_c &= (F_{\pi})^2 [1 - 2\tilde{g}_1(LM_{\pi})\xi + \mathcal{O}(\xi^2)], \\ Y_v &= (F_{\pi})^2 \bigg[-2L \frac{\partial \tilde{g}_1(LM_{\pi})}{\partial L} \xi + \mathcal{O}(\xi^2) \bigg], \\ \chi_{\sigma} &= (\langle \bar{q}q \rangle)^2 L^4 [1 - 3\tilde{g}_1(LM_{\pi})\xi + \mathcal{O}(\xi^2)], \end{split}$$

$$\tilde{g}_{1}(\lambda) = \sum_{n_{1}, n_{2}, n_{3}, n_{4} \neq 0}^{\infty} \frac{4}{\lambda \sqrt{n}} K_{1}(\lambda \sqrt{n}),$$

$$n = n_1^2 + n_2^2 + n_3^2 + n_4^2.$$

 K_1 is a Bessel function of the second kind

0.03

0.02

L

0.005

m	$\langle ar{q}q angle$	${F}_{\pi}$	${M}_{\pi}$	χ^2	Fit range
0.0002	0.4392(2)	0.2348(1)	0.0400(2)	2.5	$24 \le L \le 32$
0.0005	0.4441(2)	0.2377(1)	0.0627(2)	1.1	$24 \le L \le 32$
0.0008	0.4499(2)	0.2406(1)	0.0789(1)	0.9	$22 \le L \le 32$
0.0010	0.4528(2)	0.2423(1)	0.0878(1)	0.8	$18 \le L \le 32$
0.0015	0.4606(2)	0.2467(1)	0.1070(2)	1.3	$18 \le L \le 32$
0.0020	0.4678(2)	0.2501(1)	0.1220(2)	1.8	$20 \le L \le 32$
0.0025	0.4740(2)	0.2538(1)	0.1356(2)	1.6	$16 \le L \le 32$
0.0035	0.4867(2)	0.2606(1)	0.1584(2)	0.9	$16 \le L \le 32$

0.0025

0.04

0.035

♦ Y_v

L

m	$\langle ar{q}q angle$	χ^2	F_{π}	χ^2	${M}_{\pi}$	χ^2
0.0020	0.4668(3)	1.2	0.2498(1)	0.1	0.1226(2)	0.6
0.0025	0.4728(3)	0.7	0.2536(2)	0.9	0.1356(2)	1.6
0.0035	0.4861(3)	0.1	0.2603(1)	1.5	0.1584(2)	1.7
0.0050	0.5024(3)	0.2	0.2690(2)	1.1	0.1860(3)	0.7
0.0065	0.5170(3)	0.1	0.2764(2)	0.7	0.2083(4)	0.5
0.0075	0.5247(3)	0.2	0.2807(2)	1.6	0.2219(4)	0.9
0.0100	0.5433(2)	0.7	0.2912(2)	0.1	0.2521(5)	1.8

1-loop chiral peturbation theory

1-loop chiral perturbation theory predicts

$$\begin{split} F_{\pi} &= F[1 - \xi' \log \xi' + 2\xi' c_F], \\ \langle \bar{q}q \rangle &= \Sigma [1 - \frac{3}{2}\xi' \log \xi' + 3\xi' c_{\Sigma}], \\ M_{\pi}^2 &= M^2 [1 + \frac{1}{2}\xi' \log \xi' - \xi' c_M], \\ \xi' &= M^2/(16\pi^2 F^2) \\ \end{split} \qquad \qquad M^2 = m\Sigma/F^2 \end{split}$$

Σ	F	c_{Σ}	c_F	c_M	χ^2
0.4354(3)	0.2329(2)	11.9(3)	19.3(5)	39(3)	1.1
0.4351(5)	0.2331(4)	12.3(5)	18.9(9)	37(3)	1.6

E-region results

$$\Sigma = 0.4346(2)$$
 $F = 0.2327(1)$

Region of 1-loop chiral perturbation theory

$$\begin{split} F_{\pi} &= F[1 - \xi' \log \xi' + 2\xi' c_F], \\ \langle \bar{q}q \rangle &= \Sigma [1 - \frac{3}{2}\xi' \log \xi' + 3\xi' c_{\Sigma}], \\ M_{\pi}^2 &= M^2 [1 + \frac{1}{2}\xi' \log \xi' - \xi' c_M], \end{split}$$

$$R_F \equiv F_{\pi}/F - 1 + \xi' \log \xi',$$

$$R_{\Sigma} \equiv \langle \bar{q}q \rangle / \Sigma - 1 + 3\xi' \log \xi' / 2,$$

$$R_M \equiv M_{\pi}^2 / M^2 - 1 - \xi' \log(\xi') / 2.$$

R's linearly go to zero in the region of 1-loop chiral perturbation theory

If 5% or less error is tolerated $\xi \geq 0.006$ is needed for 1-loop chiral perturbation to be valid! $\xi \geq 0.006$ another linear region!

A knee is present at $\xi' = 0.0035$. What is the reason?

σ-resonance and chiral pert. theory

In a weakly coupled linear sigma model one can show

$$\begin{split} c_{\Sigma} &= \log(M_R/4\pi F) - \frac{7}{6} + \frac{8\pi^2}{3g_R}, \\ c_M &= \log(M_R/4\pi F) - \frac{7}{3} + \frac{8\pi^2}{g_R}, \\ \end{split}$$

where

$$M_{\sigma}^2 = M_R^2 \left[1 + \frac{g_R}{16\pi^2} (3\pi\sqrt{3} - 13) \right].$$

Here M_{σ} is that mass of the σ particle

As Mo becomes small

the region of validity of chiral Pert. theory shrinks

Using C_{Σ} = 12 and C_{M} =39 we get M_{σ}/F = 2

At the knee (i.e., m=0.0035) we find $M_{\pi}/F = 0.6$

Thus the knee occurs roughly when M_{π} = $M_{\sigma}/3$

In the current model 1-loop Chiral perturbation theory breaks down when $M_{\pi} \ge M_{\sigma}/3$

Take-home message

σ-resonance can also play an important role in determining the window of Ch.P.T

Important to match low energy constants from the ε -regime and the p-regime

Model calculations can teach us more about the role of resonances in Ch.P.T