The Charmed Strange Mesons from Lattice QCD with Overlap Fermions

Shao-Jing Dong and Keh Fei Liu
University of Kentucky

The Contents

1. The charmed strange mesons and the questions
2. The overlap fermion for heavy - light quarks on lattice
3. Numerical detail for charmed strange system
4. Charmed strange meson spectrum on the quenched lattice with overlap fermion.
5. Summary and Outlooks.

3500 -

3000 -

1500 -

1000 -

$$
D \quad D_{s}\left(0^{-}\right) \quad D_{s 0}^{*}\left(0^{+}\right) \quad D_{s 1}\left(1^{+}\right) \quad D_{s 1}\left(1^{+}\right) \quad D_{s}^{*}\left(?^{?}\right)
$$

The $D_{s 0}^{*}(2317)$ and questions

- BaBar collaboration (Phys. Rev. lett.(90)242001, 2003) and CLEO collaboration (arXiv:hep-ex/0305017). PDG gives $M \approx 2317.8(6) \mathrm{MeV}$ and $J^{P}=0^{+}(2007)$
- The quark potential model gives 2.48 GeV (S. Godfrey, N. Isgur Phys. Rev. D32(1985) 189).
- T. Banes and collaborators thought it could be a $D K$ molecule since $D_{s 0}^{*}(2317)$ is 160 MeV lighter than that predicted in the potential model.
- W. Bardeen et al discuss the $0^{-}-0^{+}$splitting in terms of chiral symmetry and gives $\Delta M \approx 338 \mathrm{MeV}$. It is very close experimental 349 MeV . However, the chiral loop will reduce this expectation. (P. Colangelo et al hep-ph/0305140, S. Godfrey hep-ph/0305122)
- Lattice prediction in static limit with NRQCD charm correction gives $2.57(11) \mathrm{GeV}$ (Gunnar Bali hep-ph/0305209)
- Lattice NRQCD quenched $2.50(2) \mathrm{GeV}$ (R. Lewis et al hep-lat/0003011)

Overlap Fermions

- Massive Overlap Fermion does not have order ma error

$$
\begin{aligned}
D(m) & =D+m a\left(1-\frac{1}{2} D\right) \\
\psi^{c} & =\left(1-\frac{1}{2} D\right) \psi ; \quad D_{c}=\frac{D}{1-\frac{1}{2} D} \\
\Rightarrow \text { propagator } & =\frac{1}{D_{c}+m} ; \quad\left\{D_{c}, \gamma_{5}\right\}=0
\end{aligned}
$$

- The order a^{2} error is small too. (T. Draper et all hep-lat/0609034)
- By examining the dispersion relation and the hyperfine splitting, we showed that one could use ma smaller than 0.5 and keep the systematic $O\left(m a^{2}\right)$ and $O\left(m^{2} a^{2}\right)$ errors to less than 3% to 4% (S.J. Dong, K. F. Liu arXiv:07103038(hep-lat))

The Lattice Detail

- $16^{3} \times 72$ lattice with Wilson gauge action (S. Tamhankar, A. Alexandru, Y. Chen, S. J. Dong, T. Draper, I. Horváth, F. X. Lee, K. F. Liu, N. Mathur, J. B. Zhang; hep-lat/0409128)
- $\beta=6.3345, a=0.0560 \mathrm{fm}$ with $r_{0}=0.5 \mathrm{fm}$ scale.
- Multi-mass inverter with 26 quark masses ($m a=0.020-0.85$), the bare mass correspond to 70 MeV to 3.0 GeV .
- From Charmonium spectrum the charm mass in lattice units is $m_{c} a=0.431(1)$ with r_{0} scale which is less than 0.5 .
- From $\phi\left(1^{-}\right)=1020 \mathrm{MeV}$ the strange mass in lattice units is $m_{s} a=0.0205(32)$ with r_{0} scale.

The charmed strange meson calculation

- On the same lattice with the same overlape fermion action for charm and strange quarks.
- For meson correlators, we use standard local interpolating fields

$$
\begin{aligned}
0^{-} & \Longrightarrow \chi(x)=\bar{\psi}(x) \gamma_{5} \psi(x) \\
0^{+} & \Longrightarrow \chi(x)=\bar{\psi}(x) \psi(x) \\
1^{-} & \Longrightarrow \chi(x)=\bar{\psi}(x) \gamma_{j} \psi(x) \quad j=1,2,3 \\
1^{+} & \Longrightarrow \chi(x)=\bar{\psi}(x) \gamma_{5} \gamma_{j} \psi(x) \quad j=1,2,3 \\
\text { and } & \\
1^{+} & \Longrightarrow \chi_{b}(x)=\bar{\psi}(x) \gamma_{i} \gamma_{j} \psi(x) \quad\{i j\}=\{12\},\{23\},\{31\}
\end{aligned}
$$

100 configurations with $m_{s} a=0.025, m_{c} a=0.450$

100 configurations with $m_{s} a=0.025, m_{c} a=0.450$

$$
D_{s 0}^{*} \text { on } 16^{3} \times 72 \text { lattice } m_{c} a=0.431
$$

$$
m_{s} a
$$

$$
D_{s}^{*} \text { on } 16^{3} \times 72 m_{c} a=0.431
$$

$$
m_{s} a
$$

Table 1: charmed strange meson masses

Particle	$\operatorname{Mass}(\times a)$	Lattice (MeV)	Exp. (MeV)
$D_{s}\left(0^{-}\right)$	$0.5608(31)$	$1976(11)$	$1968.49(34)$
$D_{s}^{*}\left(1^{-}\right)$	$0.6049(36)$	$2131(13)$	$2112.3(5)$
$D_{s 0}^{*}\left(0^{+}\right)$	$0.638(22)$	$2248(78)$	$2317.8(6)$
$D_{s 1}\left(1^{+}\right)$	$0.684(18)$	$2410(63)$	$2459.6(6)$
$D_{s 1}\left(1_{b}^{+}\right)$	$0.703(26)$	$2476(92)$	$2535.35(84)$

3500 -

3000 -

1500 -

1000 -

$$
D \quad D_{s}\left(0^{-}\right) \quad D_{s 0}^{*}\left(0^{+}\right) \quad D_{s 1}\left(1^{+}\right) \quad D_{s 1}\left(1^{+}\right) \quad D_{s}^{*}\left(?^{?}\right)
$$

The Summary and Outlook

- The overlap fermion quenched approximation results with $\bar{\psi} \psi$ interpolating fields are consistent with experimental results withing error.
- Comparison with static limit lattice results shows that the 0^{+}mass is lower that NRQCD and static limit predicted. However is heavier than RHQ action predicted (CP-PACS hep-lat/0611033v3).
- Four quark interpolating field for $D_{s 0}^{*}(2317)$? $D_{s} K$ molecule for $D_{s 0}^{*}(2317) ?$
- The 1^{-}meson mass is a good match to $D_{S}^{*}(2112)$.
- This work uses lattice $L a \approx 0.9 \mathrm{fm}$, the volumn maybe small. Larger lattice are needed to check our results.

