Nucleon structure functions with dynamical (2+1)-flavor domain wall fermions

Shigemi Ohta *^{†‡} [RBC and UKQCD-DWF Intercollaboration]

Talk at Lattice 2008, Williamsburg, July 18, 2008

RBC and UKQCD-DWF collaborations produced some dynamical DWF ensembles using QCDOC's:

- $24^3 \times 64 \times 16$ (2.7fm across), $16^3 \times 32 \times 16$ (1.8 fm), ...
- Iwasaki gauge action, $\beta = 2.13$, and Domain-Wall Fermions (DWF) quarks, $M_5 = 1.8$,
- $m_{\text{strange}}a = 0.04$, $m_{\text{ud}}a = 0.03$, 0.02, 0.01 and 0.005, with $a^{-1} \sim 1.7$ GeV.

Best ever hadron structure calculations: flavor and chiral symmetries and lattice volume.

- Very accurate determination of kaon bag parameter, $B_K^{\overline{\text{MS}}}(2\text{GeV}) = 0.524(10)(28)$,
- beginning to see SU(3) chiral perturbation failure, e.g. NLO corrections $\sim 0.5 \times LO$.

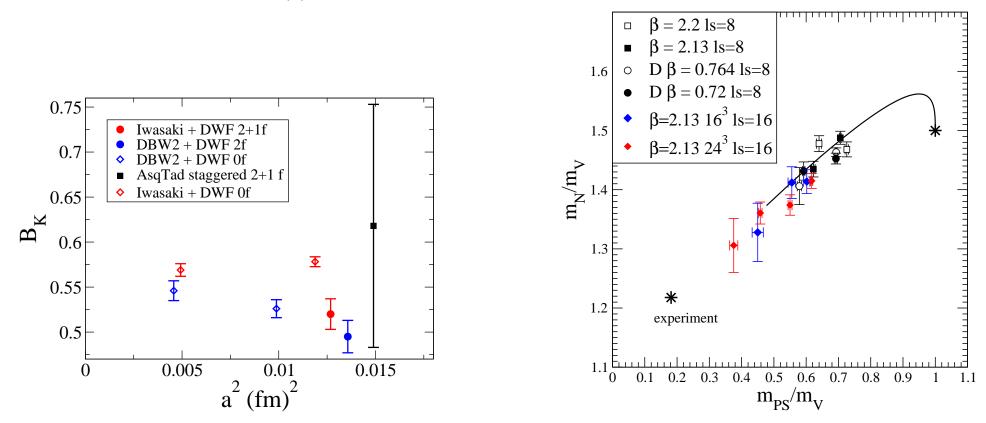
Here we report some low moments of isovector nucleon structure functions calculated by Takeshi Yamazaki, Huey-Wen Lin, Shoichi Sasaki, Tom Blum, James Zanotti, Robert Tweedie, ... and are now nearly final.

^{*}Inst. Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan

[†]Physics Department, Sokendai Graduate University of Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan [‡]RIKEN BNL Research Center, Upton, NY 11973, USA

RBC/UKQCD $N_f = 2 + 1$ dynamical DWF ensemble: from Ω^- and K masses we estimate

- Lattice cutoff $a^{-1} = 1.73(2)$ GeV, or physical volume is $(2.74(3)\text{fm})^3$,
- physical strange mass is 0.035(1)+0.003 in lattice units.



The best ever kaon and nucleon calculations in regard of good flavor and chiral symmetries.

- $m_{\pi} = 0.67, 0.56, 0.42$ and 0.33 GeV, $m_N = 1.55, 1.39, 1.22$ and 1.15 GeV.
- Very accurate constraints on CKM matrix: $B_K^{\overline{\text{MS}}}(2\text{GeV}) = 0.524(10)(28), K_{l3} f_+(0) = 0.964(5), \dots$
- Beginning to tell where SU(3) chiral perturbation fails, e.g. NLO corrections $\sim 0.5 \times LO$.

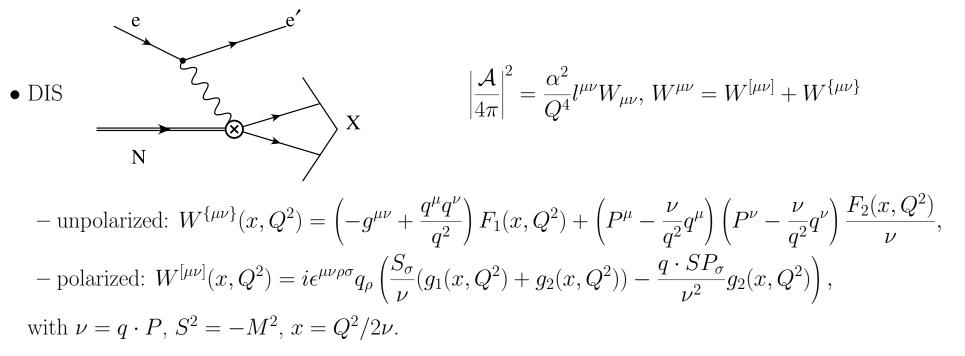
The isovector form factors are defined in the following:

$$\langle p|V_{\mu}(0)|p\rangle = \overline{u}_{p} \left[\gamma_{\mu}F_{1}(q^{2}) + \sigma_{\mu\nu}q_{\nu}F_{2}(q^{2})/2m_{N}\right]u_{p},$$

$$\langle p|A_{\mu}(0)|p\rangle = \overline{u}_{p} \left[\gamma_{\mu}\gamma_{5}G_{A}(q^{2}) + iq_{\mu}\gamma_{5}G_{P}(q^{2})\right]u_{p},$$

where $V_{\mu} = \overline{u}\gamma_{\mu}u - \overline{d}\gamma_{\mu}d$ and $A_{\mu} = \overline{u}\gamma_{\mu}\gamma_{5}u - \overline{d}\gamma_{\mu}\gamma_{5}d$ are isovector vector and axial vector currents.

Nucleon structure functions are measured in deep inelastic scatterings (and RHIC/Spin):



• The same structure functions appear in RHIC/Spin and Drell-Yang, which may also provide $\langle 1 \rangle_{\delta q}$ or $\langle P, S | \bar{\psi} i \gamma_5 \sigma_{\mu\nu} \psi | P, S \rangle$.

Moments of the structure functions are accessible on the lattice:

$$2\int_{0}^{1} dx x^{n-1} F_{1}(x,Q^{2}) = \sum_{q=u,d} c_{1,n}^{(q)}(\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{q}(\mu) + \mathcal{O}(1/Q^{2}),$$

$$\int_{0}^{1} dx x^{n-2} F_{2}(x,Q^{2}) = \sum_{f=u,d} c_{2,n}^{(q)}(\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{q}(\mu) + \mathcal{O}(1/Q^{2}),$$

$$2\int_{0}^{1} dx x^{n} g_{1}(x,Q^{2}) = \sum_{q=u,d} e_{1,n}^{(q)}(\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{\Delta q}(\mu) + \mathcal{O}(1/Q^{2}),$$

$$2\int_{0}^{1} dx x^{n} g_{2}(x,Q^{2}) = \frac{1}{2} \frac{n}{n+1} \sum_{q=u,d} [e_{2,n}^{q}(\mu^{2}/Q^{2},g(\mu)) d_{n}^{q}(\mu) - 2e_{1,n}^{q}(\mu^{2}/Q^{2},g(\mu)) \langle x^{n} \rangle_{\Delta q}(\mu)] + \mathcal{O}(1/Q^{2})$$

- c_1 , c_2 , e_1 , and e_2 are the Wilson coefficients (perturbative),
- $\langle x^n \rangle_q(\mu), \langle x^n \rangle_{\Delta q}(\mu)$ and $d_n(\mu)$ are forward nucleon matrix elements of certain local operators,
- so is $\langle x^n \rangle_{\delta q}(\mu)$ which may be provided by polarized Drell-Yang and RHIC Spin.

Unpolarized (F_1/F_2) : on the lattice we can measure: $\langle x \rangle_q$, $\langle x^2 \rangle_q$ and $\langle x^3 \rangle_q$.

$$\frac{1}{2}\sum_{s} \langle P, S | \mathcal{O}_{\{\mu_{1}\mu_{2}\cdots\mu_{n}\}}^{q} | P, S \rangle = 2 \langle x^{n-1} \rangle_{q}(\mu) [P_{\mu_{1}}P_{\mu_{2}}\cdots P_{\mu_{n}} + \cdots - (\text{trace})]$$
$$\mathcal{O}_{\mu_{1}\mu_{2}\cdots\mu_{n}}^{q} = \bar{q} \left[\left(\frac{i}{2}\right)^{n-1} \gamma_{\mu_{1}} \overleftrightarrow{D}_{\mu_{2}} \cdots \overleftrightarrow{D}_{\mu_{n}} - (\text{trace}) \right] q$$

Polarized (g_1/g_2) : on the lattice we can measure: $\langle 1 \rangle_{\Delta q} (g_A), \langle x \rangle_{\Delta q}, \langle x^2 \rangle_{\Delta q}, d_1, d_2, \langle 1 \rangle_{\delta q}$ and $\langle x \rangle_{\delta q}$.

$$-\langle P, S | \mathcal{O}_{\{\sigma\mu_{1}\mu_{2}\cdots\mu_{n}\}}^{5q} | P, S \rangle = \frac{2}{n+1} \langle x^{n} \rangle_{\Delta q}(\mu) [S_{\sigma}P_{\mu_{1}}P_{\mu_{2}}\cdots P_{\mu_{n}} + \cdots - (\text{traces})]$$
$$\mathcal{O}_{\sigma\mu_{1}\mu_{2}\cdots\mu_{n}}^{5q} = \bar{q} \left[\left(\frac{i}{2}\right)^{n} \gamma_{5}\gamma_{\sigma} \, \overleftrightarrow{D}_{\mu_{1}}\cdots \overleftrightarrow{D}_{\mu_{n}} - (\text{traces}) \right] q$$
$$\langle P, S | \mathcal{O}_{[\sigma\{\mu_{1}]\mu_{2}\cdots\mu_{n}\}}^{[5]q} | P, S \rangle = \frac{1}{n+1} d_{n}^{q}(\mu) [(S_{\sigma}P_{\mu_{1}} - S_{\mu_{1}}P_{\sigma})P_{\mu_{2}}\cdots P_{\mu_{n}} + \cdots - (\text{traces})]$$
$$\mathcal{O}_{[\sigma\mu_{1}]\mu_{2}\cdots\mu_{n}}^{[5]q} = \bar{q} \left[\left(\frac{i}{2}\right)^{n} \gamma_{5}\gamma_{[\sigma} \, \overleftrightarrow{D}_{\mu_{1}]}\cdots \, \overleftrightarrow{D}_{\mu_{n}} - (\text{traces}) \right] q$$

and transversity (h_1) :

$$\langle P, S | \mathcal{O}_{\rho\nu\{\mu_1\mu_2\cdots\mu_n\}}^{\sigma q} | P, S \rangle = \frac{2}{m_N} \langle x^n \rangle_{\delta q} [(S_\rho P_\nu - S_\nu P_\rho) P_{\mu_1} P_{\mu_2} \cdots P_{\mu_n} + \cdots - (\text{traces})]$$
$$\mathcal{O}_{\rho\nu\mu_1\mu_2\cdots\mu_n}^{\sigma q} = \bar{q} [\left(\frac{i}{2}\right)^n \gamma_5 \sigma_{\rho\nu} \, \overleftrightarrow{D}_{\mu_1} \cdots \overleftrightarrow{D}_{\mu_n} - (\text{traces})] q$$

Higher moment operators mix with lower dimensional ones: Only $\langle x \rangle_q$, $\langle 1 \rangle_{\Delta q}$, $\langle x \rangle_{\Delta q}$, d_1 , and $\langle 1 \rangle_{\delta q}$ can be measured with $\vec{P} = 0$.

Our formulation follows the standard one:

- Two-point function: $G_N(t) = \text{Tr}[(1+\gamma_t)\sum_{\vec{x}} \langle TB_1(x)B_1(0) \rangle]$, using $B_1 = \epsilon_{abc}(u_a^T C \gamma_5 d_b) u_c$ for proton.
- Three-point functions: appropriate operator inserted between source and sink.
- Source and sink are separated by 12 lattice spacings. 4 source positions.
- Gaussian smearing is employed to enhance ground-state signals.
- All the matrix elements except d_1 are iso-vector.

Number of configurations and pion mass

$m_f a$	# of config.'s	meas. interval	$N_{\rm sources}$	$m_{\pi} \; (\text{GeV})$	$m_N \; (\text{GeV})$
0.005	932	10	4	0.33	1.15
0.01	356	10	4	0.42	1.22
0.02	98	20	4	0.56	1.39
0.03	106	20	4	0.67	1.55

Good chiral and flavor symmetries of DWF help:

- negligible unwanted mixings,
- straight-forward non-perturbative renormalization: RBC-standard RI-MOM (Rome-Southampton).

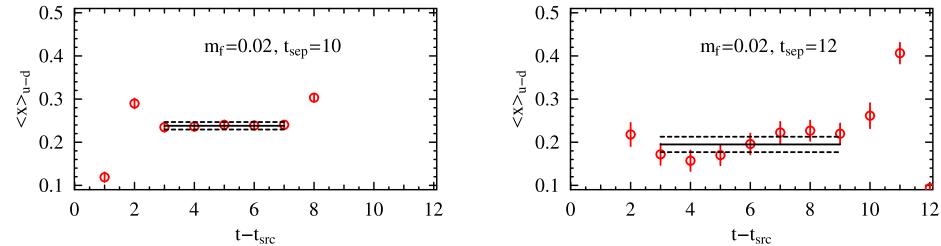
In particular, ratios such as g_A/g_V or $\langle x \rangle_{u-d}/\langle x \rangle_{\Delta u-\Delta d}$ are naturally renormalized.

Two possibly important sources of systematics:

- Time separation between nucleon source and sink,
- Spatial volume.

Source/sink time separation:

• If too short, too much contamination from excited states, but if too long, the signal is lost.

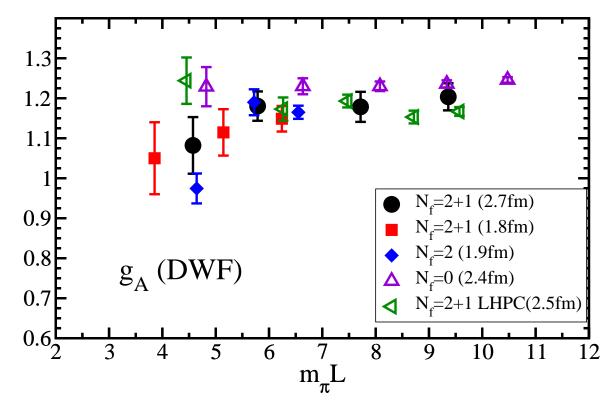


• In an earlier RBC 2-flavor DWF study at $a^{-1} \sim 1.7$ GeV, separation of 10 or 1.1 fm appeared too short.

In this study we choose separation 12 or 1.37 fm: lighter quarks should help maintaining the signal .

Spatial volume: in Lattice 2007 Takeshi Yamazaki reported significant finite-size effect in axial charge:

• measured in neutron β decay, $g_A/g_V = 1.2695(29)$, decides neutron life.

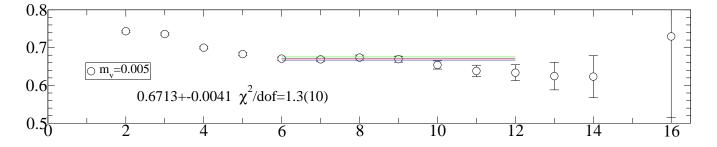


Our DWF on quenched and LHPC DWF on MILC calculations are presented for comparison.

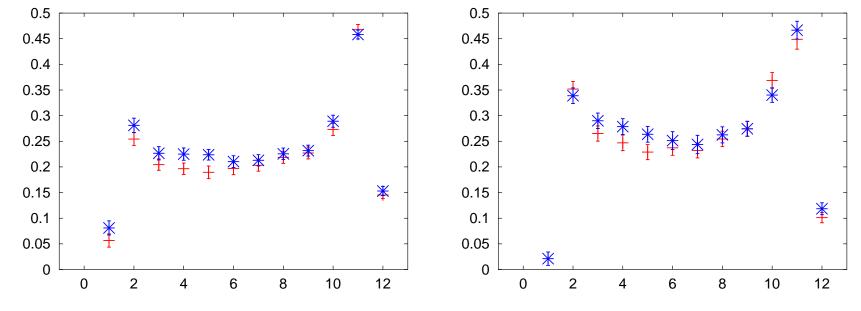
- Heavier quarks: consistent with experiment, no discernible quark-mass dependence.
- Lighter quarks: finite-size sets in as early as $m_{\pi}L \sim 5$, appear to scale in $m_{\pi}L$:
 - elastic form factors demand big volumes.
- Does not necessarily mean inelastic structure functions do: need further investigation.

RBC/UKQCD (2+1)-flavor, Iwasaki+DWF dynamical, $a^{-1} = 1.73(2)$ GeV, $m_{res} = 0.00315(2)$, $m_{strange} = 0.04$,

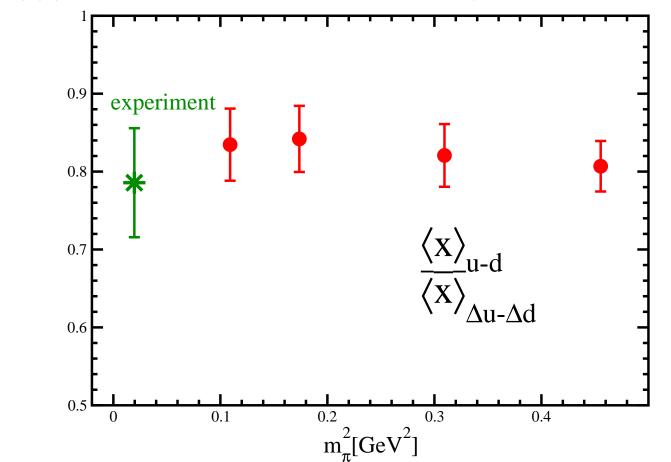
Mass signal: $m_f = 0.005$



Bare three-point functions: $\langle x \rangle_{u-d}$ (left) and $\langle x \rangle_{\Delta u-\Delta d}$ (right), for $m_f = 0.005$ (red +) and 0.01 (blue ×):

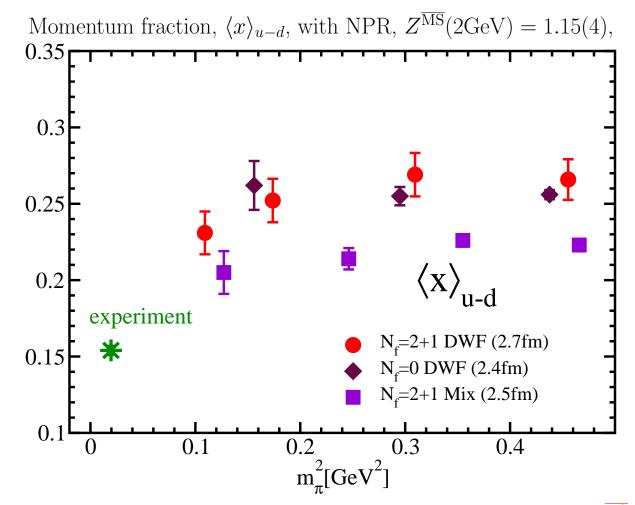


Similar in quality with 2-flavor, time separation 12.

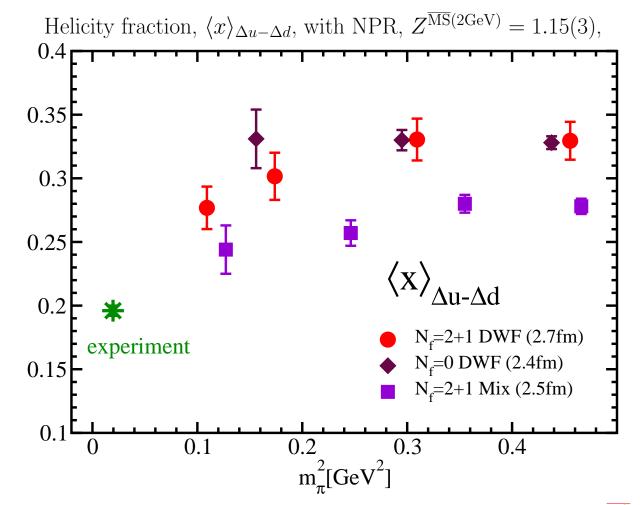


Ratio, $\langle x \rangle_{u-d} / \langle x \rangle_{\Delta u - \Delta d}$, of momentum and helicity fractions (naturally renormalized on the lattice),

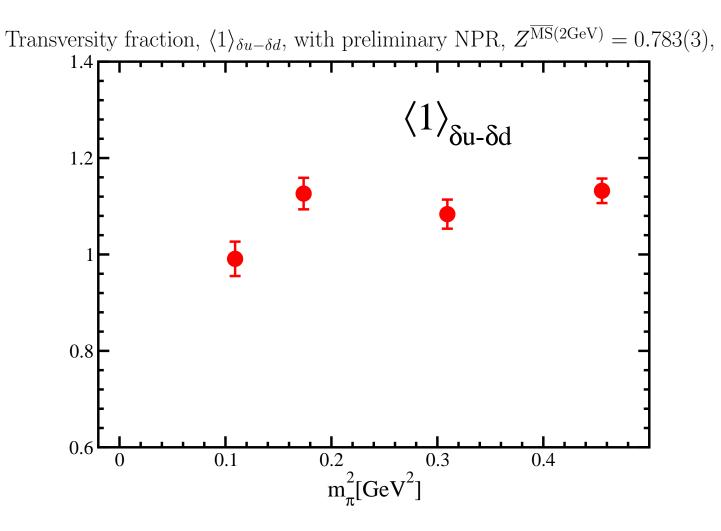
consistent with experiment, no discernible quark-mass dependence. No finite-size effect seen, in contrast to g_A/g_V which is also naturally renormalized on the lattice.



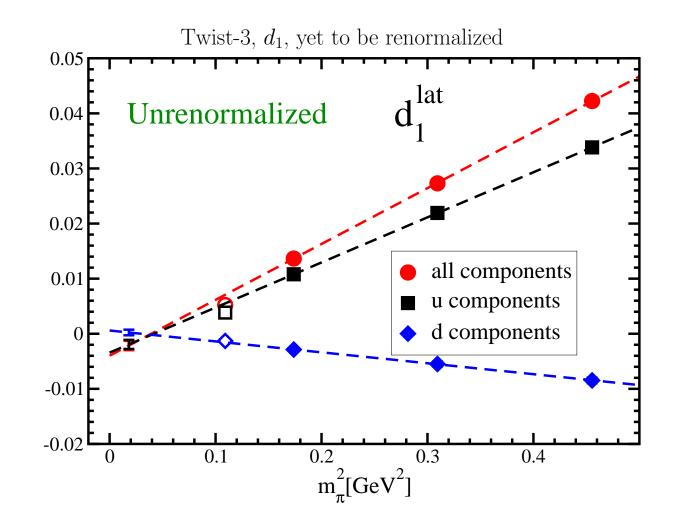
Absolute values have improved, trending to the experimental values, with NPR, $Z^{\overline{\text{MS}}}(2\text{GeV}) = 1.15(4)$. Light quarks or finite volume? Need further investigation. Why differ from LHPC/MILC? NPR? Unitarity? Source/sink?



Absolute values have improved, trending to the experimental values, with NPR, $Z^{\overline{\text{MS}}}(2\text{GeV}) = 1.15(3)$. Light quarks or finite volume? Need further investigation. Why differ from LHPC/MILC? NPR? Unitarity? Source/sink?



Preliminary NPR is $Z^{\overline{\text{MS}}}(2\text{GeV}) = 0.783(3).$



Chirally well-behaved, small, and in consistency with Wandzura-Wilczek relation.

Conclusions

RBC/UKQCD (2+1)-flavor, Iwasaki+DWF dynamical calculations with, $a^{-1} = 1.73(2)$ GeV, $(2.74(3)\text{fm})^3$ box, $m_{\text{res}} = 0.00315(2)$, $m_{\text{strange}} = 0.04$, $m_{\pi} = 0.67$, 0.56, 0.42 and 0.33 GeV; $m_N = 1.55$, 1.39, 1.22 and 1.15 GeV:

While elastic form factors such as the axial charge, g_A , suffer large finite-volume effect,

- a similarly naturally renormalized ratio, $\langle x \rangle_{u-d} / \langle x \rangle_{\Delta u \Delta d}$, of momentum and helicity fractions does not show such effect.
 - It is consistent with experiment, and
 - does not show any discernible quark-mass dependence.
- Lightest points show an encouraging trend toward experiments in both momentum and helicity fractions.
 - Light quark or finite volume? Plan to check the smaller 1.8-fm box.
 - But they are different from corresponding LHPC/MILC results. NPR? Unitarity? Source/sink?
- Transversity moment is obtained.
- Twist-3 moment, d_1 , is chirally well-behaved, small, and consistent with Wandzura-Wilczek relation.

Structure function renormalizations are now complete: typically 15-20 % effect. Exploring auxiliary determinant for much larger volume.