Tuning - Nf=2 vs Nf=2+1+1 - Store

Status of ETMC simulations with N_f=2+1+1 twisted mass fermions

Siebren Reker

university of groningen

Tuning - Nf=2 vs Nf=2+1+1 - Conclusions

ETMC

- <u>R. Baron</u>, P. Boucaud, <u>A. Deuzeman, V. Drach</u>, F. Farchioni, V. Gimenez Gomez, G. Herdoiza, <u>K. Jansen</u>, I. Montvay, D. Palao, E. Pallante, O. Pene, E.E. Scholz, C. Urbach, M. Wagner, U. Wenger
- Barcelona, Groningen, Jülich, Lyon, München, Orsay (Paris), Rome

Tuning - Nf=2 vs Nf=2+1+1 - Store and a store

Simulations

- 4 flavour twisted mass fermion action: mass degenerate light doublet, mass split heavy doublet: N_f=2+(1+1)
- Iwasaki gauge action
- PHMC algorithm
- Runs without stout, some tests of stout

Fermion action

- $N_f=2+1+1$ twisted mass Wilson fermions: arXiv:hep-lat/0606011v1 (Chiarappa et al.)
- Light doublet as in N_f = 2: $S_l = \bar{\chi}_l Q_l^{(\chi)} \chi_l$
- Twisted basis: $\chi_l = \begin{pmatrix} \chi_u \\ \chi_d \end{pmatrix}$
- $Q_l^{(\chi)} = \tilde{m_{0l}} + i\gamma_5\tau_3 a\mu_l + N + R$

•
$$\tilde{m_{0l}} = \frac{1}{2\kappa_l}$$

Fermion action II

• Mass-split heavy doublet, details: arXiv:hep-lat/0311008v2 (Frezzotti, Rossi)

•
$$S_h = \bar{\chi}_h Q_h^{(\chi)} \chi_h$$
 $\chi_h = \begin{pmatrix} \chi_c \\ \chi_s \end{pmatrix}$

•
$$Q_h^{(\chi)} = \tilde{m_{0h}} + i\gamma_5\tau_1a\mu_\sigma + \tau_3a\mu_\delta + N + R$$

•
$$\psi_l^{phys} = e^{\frac{i}{2}\omega_l\gamma_5\tau_3}\chi_l$$
 $\omega_l = \frac{\pi}{2}$

•
$$\psi_h^{phys} = e^{\frac{i}{2}\omega_h\gamma_5\tau_1}\chi_h$$
 $\omega_h = \frac{\pi}{2}$

Tuning

 Automatic O(a) improvement at (or near) maximal twist

•
$$am^{PCAC} = 0 \Leftrightarrow \omega_l = \frac{\pi}{2} \Leftrightarrow \kappa = \kappa_c$$

- 4 different values of $a\mu_l \, m_{\pi} \sim 315-600 \, \text{MeV}$
- Tune heavy doublet: $a\mu_{\sigma}, a\mu_{\delta}$ (done) $m_{\rm K} \sim 500 \, {\rm MeV}, m_{\rm c} \sim 10 m_{\rm s}$

Current runs

 $V = 24^3 \times 48, \beta = 1.9, a\mu_{\sigma} = 0.15, a\mu_{\delta} = 0.19$

aµı	0.004	0.006	0.008	0.01
traj (τ=1)	~5000	~200	~850	~950
am ^{pcac} (e-5)	-29(40)	61(56)	28(28)	-12(54)
κ _c	0.16327	0.16323	0.16326	0.163255

$$\begin{aligned} & \left| \frac{Q_{k}^{(\chi)}}{P_{k}^{(\chi)} \text{bduction}^{\mu_{kl}}} \frac{1}{\pi} \frac{h}{\delta} \frac{\partial x_{5}}{\partial x_{5}} \frac{\partial a}{\partial a} \frac{h}{\hbar} \frac{h}{\partial x_{5}} \frac{N}{\hbar} \frac{h}{h} \frac{\partial x_{5}}{\partial x_{5}} \frac{\partial x_{5}}{\partial x_{6}} \frac{\partial x_{6}}{\partial x_{6}} \frac{\chi_{6}}{\chi_{6}} \frac{\chi_{6}}{\chi_{6}} \frac{\chi_{6}}{\chi_{5}} \frac{\chi_{6}}{\chi_{6}} \frac{\chi_{6}}{\chi_{5}} \frac{\chi_{7}}{\chi_{5}} \frac{\chi_{7}}{\chi_{5}} \frac{\chi_{7}}{\chi_{5}} \frac{\chi_{7}}{\chi_{5}} \frac{\chi_{7}}{\chi_{5}} \frac{\chi_{7}}{\chi_{6}} \frac{\chi_{7}}{\chi_{5}} \frac{\chi_{7}}{\chi_{7}} \frac{$$

Stout tests

- Caveat: ongoing (statistics, algorithmic)
- V=24³x48, β =1.9, $a\mu_l$ =0.004, one level of stout, Q=0.15
- Retune κ , $a\mu_{\sigma}$, $a\mu_{\delta}$

	traj	к	α μσ	α μδ	m ^{pcac}
no stout	~5000	0.16327	0.15	0.19	-29(40)e-5
stout	~2500	0.14552	0.17	0.185	-16(31)e-5

Stout results

	am_{π}	af_π	Z_P/Z_S
no stout	0.1447(7)	0.0656(4)	0.6539(16)
stout	0.1237(9)	0.0534(25)	0.752(9)

	am _N	$am_{\Delta^{++}}$	a_{Δ}^+
no stout	0.552(13)	0.722(21)	0.721(30)
stout	0.519(21)	0.676(35)	0.676(38)

Conclusions

- Tuning is completed for all 4 $a\mu_l$ values for the lattices at V=24³x48 at β =1.9
- Stout smearing looks promising, investigations ongoing
- Next: continue production runs, new lattice spacing, larger volume

university of groningen

14

Action terms

$$N_{xy} \equiv -\frac{1}{2} \sum_{\mu=\pm 1}^{\pm 4} \partial_{x,y+\hat{\mu}} U_{y\mu} \gamma_{\mu}$$

$$R_{xy} \equiv -\frac{r}{2} \sum_{\mu=\pm 1}^{\pm 4} \partial_{x,y+\hat{\mu}} U_{y\mu}$$

PCAC mass

$$am_{\chi l}^{PCAC} \equiv \frac{\left\langle \partial_{\mu}^{*} A_{l,x\mu}^{+} P_{l,y}^{-} \right\rangle}{2 \left\langle P_{l,x}^{+} P_{l,y}^{-} \right\rangle}$$
$$A_{l,x\mu}^{a} \equiv \bar{\chi}_{l,x} \frac{1}{2} \tau_{a} \gamma_{\mu} \gamma_{5} \chi_{l,x}$$
$$P_{l,x}^{a} = \bar{\chi}_{x} \frac{1}{2} \tau_{a} \gamma_{5} \chi_{l,x}$$
$$\tau_{+} = \tau_{1} \pm i\tau_{2}$$

Explicit demixing

$$\begin{pmatrix} \bar{\psi}^{(d)}\gamma_{5}\psi^{(s)} \\ \bar{\psi}^{(d)}\gamma_{5}\psi^{(c)} \\ \bar{\psi}^{(d)}\psi^{(s)} \\ \bar{\psi}^{(d)}\psi^{(c)} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} c_{l}c_{h} & s_{l}s_{h} & -is_{l}c_{h} & +ic_{l}s_{h} \\ s_{l}s_{h} & c_{l}c_{h} & +ic_{l}s_{h} & -is_{l}c_{h} \\ -is_{l}c_{h} & +ic_{l}s_{h} & c_{l}c_{h} & s_{l}s_{h} \\ +ic_{l}s_{h} & -is_{l}c_{h} & s_{l}s_{h} & c_{l}c_{h} \end{pmatrix} \begin{pmatrix} Z_{P}\bar{\chi}^{(d)}\gamma_{5}\chi^{(s)} \\ Z_{P}\bar{\chi}^{(d)}\gamma_{5}\chi^{(c)} \\ Z_{S}\bar{\chi}^{(d)}\chi^{(s)} \\ Z_{S}\bar{\chi}^{(d)}\chi^{(c)} \end{pmatrix}$$

 $c_l = \cos(\omega_l/2)$ $s_l = \sin(\omega_l/2)$ $c_h = \cos(\omega_h/2)$ $s_h = \sin(\omega_h/2)$

For masses: Determine the twist angles and ratio of renormalization factors by requiring that the physical basis correlation matrix is diagonal

Rough estimates

 no stout, mu=0.004, mpi ≈ 315 MeV, mK ≈ 500 MeV, mD ≈ 2000 MeV

