Energy dependence of nucleon-nucleon potentials

Sinya Aoki University of Tsukuba/Riken BNL Research Center

in collaboration with

J. Balog, T. Hatsuda, N. Ishii, K. Murano, H. Nemura, P. Weisz

Introduction

What binds protons and neutrons inside a nuclei?

gravity: too weak Coulomb: repulsive between pp no force between nn, np

New force (nuclear force)?

1935 H. Yukawa

introduced virtual particles (mesons) to explain the nuclear force

1949 Nobel prize

A current understanding of the nuclear potential

Reid93: Stoks et al., Phys. Rev. C49('94)2950. AV18: Wiringa et al., Phys.Rev. C51('95) 38.

Origin of RC: "The most fundamental problem in Nuclear physics."

Note: Pauli principle is not essential for the "RC".

QCD based explanation is needed.

An "answer" by lattice QCD simulations

N. Ishii S. Aoki and T. Hatsuda, Phys.Rev.Lett. 90(2007)0022001

NN (effective) central potentials

Quenched QCD

 $m_{\pi} \simeq 0.53 \text{ GeV}$

 $E\simeq 0$

"The achievement is both a computational *tour de force* and a triumph for theory."

Nature Research Highlights 2007

Our strategy

Wave function
$$\varphi_E(\mathbf{x}) = \langle 0 | N(\mathbf{x}, 0) N(\mathbf{0}, 0) | NN; E \rangle$$

 $\mathbf{V}(\mathbf{x})\varphi_E(\mathbf{x}) = \left(E + \frac{\nabla^2}{2m}\right)\varphi_E(\mathbf{x})$

(equal-time BS amplitude)

2N state with energy E

Schrödinger equation

Some questions

- 1. $V(\mathbf{x})$ may depend on energy E.
- 2. $V(\mathbf{x})$ may depend on nucleon fields N(x).

This talk: focus on energy dependences.

A. V(x) from an integrable model in 2 dimensions. B. NN potential at $E \neq 0$ in quenched QCD.

Sasaki-Ishizuka, arXiv:0804.2941[hep-lat]

Example: $\pi\pi$

Potentials from an integrable model

Ref. S. Aoki, J. Balog and P. Weisz, arXiv:0805.3098[hep-th]

Ising Field Theory in 2 dimensions

Bethe-Salpeter wave function

$$\Psi(r,\theta) = i\langle 0|\sigma(x,0)\sigma(0,0)|\theta,-\theta\rangle^{\text{in}}$$

spin fields

$$M: \text{ mass, } \theta: \text{ rapidity}$$
$$p = M(\cosh(\theta), \sinh(\theta))$$
$$r = Mx$$

Result by P. Fonseca and A. Zamolodchikov, hep-th/0309228.

$$\Psi(r,\theta) = \frac{e^{\chi(r)/2}}{\mathrm{ch}\theta} \left[\Phi_+(r,\theta)^2 \cosh\left(\frac{\varphi(r)}{2} - \theta\right) - \Phi_-(r,\theta)^2 \cosh\left(\frac{\varphi(r)}{2} + \theta\right) \right]$$
$$\Phi'_{\pm}(r,\theta) = \frac{1}{2} \mathrm{sh}(\varphi(r) \pm \theta) \Phi_{\mp}(r,\theta) \qquad \qquad \frac{1}{r} \left[r\varphi'(r) \right]' = \frac{1}{2} \mathrm{sh}(2\varphi(r)) \\ \qquad \qquad \frac{1}{r} \left[r\chi'(r) \right]' = \frac{1}{2} \left[1 - \mathrm{ch}(2\varphi(r)) \right]$$

Solve these equations numerically with appropriate boundary conditions by Mathematica.

Bethe-Salpeter wave function

BS Potentials

$$V_{\theta}(r) = \frac{\Psi''(r,\theta) + \sinh^2 \theta \Psi(r,\theta)}{\Psi(r,\theta)} \qquad \begin{array}{c} r \to 0 \\ \sim -\frac{3}{16} \frac{1}{r^2} \end{array} \quad \text{OPE}$$

Universal(θ -independent) at small r

 $r^2 V_{\theta}(\mathbf{r})$ Energy dependence is small 0.2 = 1.0θ up to $\theta \simeq 0.6$ $\theta = 0.6$ 0.1 potentials are almost identical 0 $\theta = 0.3$ betweeen $\theta = 0$ and 0.3 -0.1 Energy dependence is $\frac{3}{16}$ -0.2 weak at low energy ! r 1 3 0

Nucleon-Nucleon Potential at non-zero Energy in Quenched QCD

K. Murano, S. Aoki, T. Hatsuda, N. Ishii, H. Nemura Work in progress

Set-up of numerical simulations

quenched QCD on $32^3 \times 48$ lattice plaquette gauge at $\beta = 5.7$: $a \simeq 0.137$ fm Wilson quark with anti-periodic BC $m_{\pi} \simeq 530$ MeV, $m_N \simeq 1334$ MeV

$$\mathbf{p}_{\min} = \frac{\pi}{L}(1, 1, 1)$$
 $|\mathbf{p}_{\min}| \simeq 240 \text{ MeV}$
 $E = \frac{k^2}{m_N} \simeq 50 \text{ MeV}$
 $N_{\text{conf}} = 439$ \longrightarrow $N_{\text{conf}} = 700$

Wave function with APBC

Wave functions are different between APBC and PBC.

Zoom-In

Vc(r;¹S₀):PBC v.s. APBC

Potentials are almost identical between APBC and PBC !

Fit of the wave function at large distance

$$(\nabla^{2} + k^{2})G(\mathbf{x}; k^{2}) = -\delta_{L}(\mathbf{x}) \quad \text{Green's function}$$

$$G(\mathbf{x}; k^{2}) = \frac{1}{L^{3}} \sum_{\mathbf{n} \in \Gamma} \frac{e^{i(2\pi/L)\mathbf{n} \cdot \mathbf{x}}}{(2\pi/L)^{2}\mathbf{n}^{2} - k^{2}} \quad \Gamma = \{(n_{x} + 1/2, n_{y} + 1/2, n_{z} + 1/2) | n_{x}, n_{y}, n_{z} \in \mathbf{Z}\}$$

1S0 NN Wave Function

 \mathbf{X}

-2e-25

Discussions

Energy dependence of NN potentials seems small at $E \leq 50 \text{ MeV}$

Non-local potential

Energy dependent potential

$$\left(E + \frac{\nabla^2}{2m}\right)\varphi_E(\mathbf{x}) = \int d^3 \boldsymbol{y} U(\mathbf{x}, \mathbf{y})\varphi_E(\mathbf{y})$$

$$V_E(\mathbf{x})\varphi_E(\mathbf{x}) = \left(E + \frac{\nabla^2}{2m}\right)\varphi_E(\mathbf{x})$$

 $U(\mathbf{x}, \mathbf{y})$ contains "off-shell" informations

Derivative expansion

Our result

$$U(\mathbf{x}, \mathbf{y}) = V(\mathbf{x}, \nabla)\delta(\mathbf{x} - \mathbf{y})$$

$$V(\mathbf{x}, \nabla) = V_0(r) + V_{\sigma}(r)(\sigma_1 \cdot \sigma_2) + V_T(r)S_{12} + O(\nabla)$$

tensor operator
$$S_{12} = \frac{3}{r^2}(\sigma_1 \cdot \mathbf{x})(\sigma_2 \cdot \mathbf{x}) - (\sigma_1 \cdot \sigma_2)$$
$$r = |\mathbf{x}|$$

Non-locality is very weak. Why ?

Universality of potentials at short distance might be understood by OPE.

Repulsive core is energy/operator independent ?

Alternative: Construct energy-independent local potential

Ex. 1-dimension

The inverse scattering theory suggests that there exist an unique energy independent local potential, which gives the correct phase shift at all energies.

"only on-shell information"

$$\left(-\frac{d^2}{dx^2} + V(x)\right) \left(\Lambda_E(x)\varphi_E(x)\right) = E\left(\Lambda_E(x)\varphi_E(x)\right)$$

"correct wave function"
local potential

$$V_E(x)\varphi_E(x) = \left(E + \frac{d^2}{dx^2}\right)\varphi_E(x)$$

 $V(x)\Lambda_E(x) = V_E(x)\Lambda_E(x) + \Lambda''_E(x) + 2\Lambda'_E(x)(\log\varphi_E(x))'$

This equation can easily be solved for $\Lambda_E(x)$, if V(x) is given.

A proposal

Consider a finite box with size L. $k_n \simeq \frac{2\pi n}{L}, n = 0, 1, 2, \cdots$

$$n \to \infty, \Omega_n$$
 becomes dense in $[0, L]$

$$V(x) = \lim_{E \to \infty} \left\{ V_E(x) - 2X_E(x) (\log(\varphi_E(x)))' - X_E(x)' + X_E(x)^2 \right\}$$

$$\Lambda_E(x) = \lim_{E \to \infty} \exp\left[-\int_0^x dy \, X_E(y)\right]$$

$$X_E(x) = \frac{K_E(x)}{2\varphi_E(x)'}$$
, or a interpolation of $\frac{K_E(x_i)}{2\varphi_E(x_i)'}$

If this limit exists, the energy-independent local potential is obtained.

Works in progress

4. OPE and universality of repulsive core

