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Motivation

The Schrödinger functional is a tool to address the non-perturbative renormalization
problem of QCD

• definition of finite volume schemes for QCD parameters and renormalization constants,

– gauge invariant, mass-independent, good numerical signals, feasable perturbation
theory

– O(a) cutoff effects induced by boundaries: trF0kF0k, trFikFik, ψ̄γ0D0ψ, . . .
– Wilson quarks require the bulk O(a) counterterms to action and operators, despite
m = 0!

• Automatic O(a) improvement is incompatible with standard SF b.c’s; eliminate bulk
O(a) effects by a chiral rotation of the Schrödinger functional (S. ’05):

− O(a) effects cancelled by a couple of boundary O(a) counterterms

− better control of continuum running of 4-quark operators, higher twist operators,...

− O(a) improvement of the running coupling without csw.
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O(a) improvement in finite volume and in the chiral limit

Consider massless lattice QCD on a torus with some kind of periodic b.c.’s: Cutoff
dependence of renormalized correlation functions is described by Symanzik’s effective
continuum theory:

Seff = S0 + aS1 +O(a2),

〈O〉 = 〈O〉cont + a〈S1O〉cont + a〈δO〉cont +O(a2).

S1, δO: O(a) counterterms for the action and for O. Chiral symmetry of S0 implies that
all insertions of O(a) counterterms vanish:

ψ → γ5ψ, ψ̄ → −ψ̄γ5 ⇒ (S0, S1) → (S0,−S1)

Assume that O is even under a γ5 transformation ⇒ δO is odd.

〈OS1〉
cont = 0 = 〈δO〉cont.

O(a) ambiguity of chiral limit does not matter, due to 〈Oψ̄ψ〉cont = 0
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The Schrödinger functional and O(a) improvement

The Schrödinger functional is the functional integral on a hyper cylinder,

Z =

∫

fields

e−S

with periodic boundary conditions in spatial directions and Dirichlet conditions in time.
With P± = 1

2(1 ± γ0),

P+ψ(x)|x0=0 = ρ, P−ψ(x)|x0=T = ρ′,

ψ̄(x)P−|x0=0 = ρ̄, ψ̄(x)P+|x0=T = ρ̄′,

Ak(x)|x0=0 = Ck, Ak(x)|x0=T = C ′k,

Correlation functions are then defined as usual

〈O〉(P±) =

{

Z−1

∫

fields

O e−S

}

ρ=ρ′=0; ρ̄=ρ̄′=0 ;C=C′=0
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O may contain quark boundary fields

ζ(x) ≡ P−ζ(x) =
δ

δρ̄(x)

ζ̄(x) ≡ ζ̄(x)P+ = −
δ

δρ(x)

T

time

0

space

C’

C

• Problem: the γ5 field transformation switches the projectors of the quark b.c.’s: The
boundary conditions, like mass terms, break chiral symmetry and define a direction in
chiral flavour space.

⇒ γ5-transformation:

〈O〉cont
(P±) = 〈O〉cont

(P∓), 〈OS1〉
cont
(P±) = −〈OS1〉

cont
(P∓) 6= 0

⇒ large cutoff effects cancelled by csw even in the chiral limit!
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Possible solution:

• supplement the γ5 transformation with a flavour permutation

ψ → ψ′ = γ5τ
1ψ, ψ̄ → −ψ̄γ5τ

1

• change quark boundary projectors, such that they commute with γ5τ
1, e.g.

P± = 1
2(1 ± γ0τ

3), Q± = 1
2(1 ± iγ0γ5τ

3),

observe: Q± can be obtained by chirally rotating P± b.c.’s

• In the free theory the Q± boundary conditions can be implemented using an orbifold
construction (S. ’05).⇒ teaches us how to modify the Wilson-Dirac operator near the
time boundaries:
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Wilson-Dirac operator as a difference operator in time:

DWψ(x) = −P−U(x, 0)ψ(x0 + a,x) +Kψ(x) − P+U(x0 − a,x)†ψ(x0 − a,x)

Kψ(x) =

(

1 + am0 + 1
2

3
∑

k=1

{

a(∇k + ∇∗k)γk − a2∇∗k∇k

}

)

ψ(x)

+ csw
i
4a

2
3
∑

µ,ν=0

σµνF̂µν(x)ψ(x),

There are 3 variants of the orbifold construction, depending on whether the reflection is
introduced about x0 = 0 or with an O(a) offset at x0 = ±a/2.

With O(a) offset +a/2, one obtains

aDWψ(x) =











−U(x, 0)P−ψ(x+ a0̂) + (K + iγ5τ
3P−)ψ(x) if x0 = a,

aDWψ(x) if a < x0 < T − a,

(K + iγ5τ
3P+)ψ(x) − U(x− a0̂)†P+ψ(x− a0̂) for x0 = T − a.

dynamical field variables: ψ(x) for 0 < x0 < T (as in standard SF)
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SF boundary conditions and chiral rotations

Consider isospin doublets ψ′ and ψ̄′ satisfying homogeneous SF boundary conditions
(P± = 1

2(1 ± γ0)),

P+ψ
′(x)|x0=0 = 0, P−ψ

′(x)|x0=T = 0,

ψ̄′(x)P−|x0=0 = 0, ψ̄′(x)P+|x0=T = 0.

perform a chiral field rotation,

ψ′ = R(α)ψ, ψ̄′ = ψ̄R(α) R(α) = exp(iαγ5τ
3/2

the rotated fields satisfy chirally rotated boundary conditions

P+(α)ψ(x)|x0=0 = 0, P−(α)ψ(x)|x0=T = 0,

ψ̄(x)γ0P−(α)|x0=0 = 0, ψ̄(x)γ0P+(α)|x0=T = 0,

with the projectors
P±(α) = 1

2

[

1 ± γ0 exp(iαγ5τ
3)
]

.
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Special cases of α = 0, π/2:

P±(0) = P±, P±(π/2) ≡ Q± = 1
2(1 ± iγ0γ5τ

3),

Consider the action

Sf [m,µq] =

∫ T

0

dx0

∫ L

0

d3x ψ̄′(x)(D/ +m+ iµqγ5τ
3)ψ′(x),

and label correlation functions with (m,µq, P±). Performing the change of variables in
the functional integral:

〈O[ψ, ψ̄]〉(m,µq,P±) = 〈O[R(α)ψ, ψ̄R(α)]〉(m̃,µ̃q,P±(α))

m̃ = m cosα− µq sinα

µ̃q = m sinα+ µq cosα.

Boundary quark fields can be included by replacing

ζ̄(x) ↔ χ̄(0,x)P+ ζ(x) ↔ P−χ(0,x)
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• The special case of interest here:

〈O[ψ, ψ̄]〉(m,0,Q±) = 〈O[R(−π/2)ψ, ψ̄R(−π/2)]〉(0,−m,P±),

⇒ the standard mass in the rotated SF corresponds to a (negative) twisted mass
parameter in the standard SF.

• translate correlation functions from the rotated SF to the standard SF:

gab
X (x0)± = −

〈

Xa(x)Qb
±

〉

, Qa
± =

∫

d3y

∫

d3z ζ̄(y)γ5τ
aQ±ζ(z)

and find, e.g.
g11
P = f11

P , g12
V = −f11

A , g11
A = −f12

V

• Having both projectors in the boundary sources Qa
± can be used to check whether the

boundary conditions are satisfied as expected

9



Symmetries and Counterterms

In a massless theory in finite volume the identification of flavour and chiral symmetries
is a mere convention!

• take the standard Schrödinger functional with projectors P± as SU(2) flavour and
parity symmetric reference basis (the “physical” basis) Note: the γ5τ

1 transformation
ensuring automatic bulk O(a) improvement is interpreted as a discrete flavour
symmetry.

• The symmetries in the rotated SF are the same as in twisted mass QCD, in particular
there is C, (P, T ) × τ1 and the hermiticity property

γ5τ
1DWγ5τ

1 = D†W .

The determinant is real and can be shown to be positive!

• The free theory implements the correct boundary conditions, as can be checked by
computing the free propagator
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Dimension 3 counterterms

Dimension 3 operators allowed by the symmetries:

O1 = ψ̄iγ5τ
3ψ = ψ̄γ0Q+ψ − ψ̄γ0Q−ψ.

→ multiplicative renormalization of ζ,ζ ′ and ζ̄,ζ̄ ′; like in standard SF, vanishes for
homogeneous boundary conditions.

2 further operators:
O2 = ψ̄Q+ψ, O3 = ψ̄Q−ψ

• γ5τ
1-odd ⇒ break flavour and parity symmetry! These must be finite counterterms,

i.e. their renormalisation constants zf , z̃f does not depend on the renormalisation
scale!

• consist of either only Dirichlet or only dynamical components ⇒ only one is needed at
either boundary, the other will only be needed in some disconnected quark diagrams
(can be avoided).
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• With homogeneous b.c.’s O2 = O(a) when inserted near the boundary at x0 = 0 ⇒
one may choose ψ̄ψ = O2 + O3 and implement it at either boundary by rescaling the
mass term at x0 = a and x0 = T − a, by adding

δS = (zf − 1)
∑

x

(

ψ̄ψ|x0=a + ψ̄ψ|x0=T−a

)

to the action.

• expectation: once zf is tuned correctly, flavour and parity and thus the γ5τ
1-symmetry

is realised, along with bulk O(a) improvement.

• Observation: zf can be seen to generate a chiral rotation, it corresponds to a
renormalisation of the angle α in the projectors P±(α) away from the value α = π/2.
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There are 8 operators of dimension 4

O4 = ψ̄ Q+γkDkψ − ψ̄ D
←

kγkQ+ψ,

O5 = ψ̄ Q−γkDkψ − ψ̄ D
←

kγkQ−ψ,

O6 = ψ̄ Q+γ0D0ψ − ψ̄ D
←

0γ0Q+ψ,

O7 = ψ̄ Q−γ0D0ψ − ψ̄ D
←

0γkQ−ψ,

O8 = ψ̄ Q+D0ψa+ ψ̄ D
←

0Q+ψ,

O9 = ψ̄ Q−D0ψ + ψ̄ D
←

0Q−ψ,

O10 = ψ̄ Q+γ0γkDkψ + ψ̄ D
←

kγkγ0Q+ψ,

O11 = ψ̄ Q−γ0γkDkψ + ψ̄ D
←

kγkγ0Q−ψ.

There are 5 relations: 4 equations of motion, 1 from total derivative:

O4 = −O6, O5 = −O7, O8 = −O10, O9 = −O11, O10−O11 = ∂k

(

ψ̄ γkiγ5τ
3ψ
)

i.e. one ends up with 3 counterterms; however, O8−11 are γ5τ
1-odd, so that only 2 are

needed, analogous to c̃s, c̃t in standard SF!
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Warning:

The set-up with the a/2 offset means that the time boundaries are at x0 = a, T − a.
Defining the quark boundary fields ζ, ζ̄ at x0 = a too, may lead to contact terms and
ruin the correspondence to the standard SF:

Set α = π/4, compute the free continuum propagator S(x0, y0;α = π/4)cont: Then tune
zf in the lattice propagator to minimise

min |(S(T, T/4) − S(T, T/4;α = π/4)cont| :

One finds that for zf = 1.553.. there is a minimum which goes to zero as a2. Trying
the same for

min |(S(T, a) − S(T, 0;α = π/4)cont| :

this does not work! However, for

min |(S(T, 2a) − S(T, 0;α = π/4)cont| :

this works again (with corrections of O(a).
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Conclusions and Outlook

• Chirally rotated SF boundary conditions for Wilson quarks are useful to improve the
control over the continuum limit for step-scaling functions, or to avoid csw for the
running coupling.

• this requires the usual tuning to the critical mass (from the PCAC relation), and of
the additional dimension 3 operator, by imposing flavour and parity symmetry, e.g.
through

g11
A (T/2)− = 0

• Once the tuning is carried out, the boundary O(a) effects in most correlation functions
are parameterised by ct and ds which is equivalent to c̃t in the standard SF.

• The precise framework to be used is being optimised as we speak...

• A non-perturbative (quenched) study has been initiated (cf. talk by B. Leder) and a
corresponding 1-loop perturbative calculation has been started.
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