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Motivation

The Schrodinger functional is a tool to address the non-perturbative renormalization
problem of QCD

e definition of finite volume schemes for QCD parameters and renormalization constants,

— gauge invariant, mass-independent, good numerical signals, feasable perturbation
theory

— O(a) cutoff effects induced by boundaries: tr ForFor, tr FypFig, Yy0Dot, ...

— Wilson quarks require the bulk O(a) counterterms to action and operators, despite
m = 0!

e Automatic O(a) improvement is incompatible with standard SF b.c's; eliminate bulk
O(a) effects by a chiral rotation of the Schrodinger functional (S. '05):

— O(a) effects cancelled by a couple of boundary O(a) counterterms
— better control of continuum running of 4-quark operators, higher twist operators,...

— Of(a) improvement of the running coupling without cgy.



O(a) improvement in finite volume and in the chiral limit
Consider massless lattice QCD on a torus with some kind of periodic b.c.'s: Cutoff

dependence of renormalized correlation functions is described by Symanzik's effective
continuum theory:

Seg = So+aS;+ 0(a?),
<O> _ <O>cont_|_a<SlO>cont _i_a<50>cont_i_0(a2).

S1, 60: O(a) counterterms for the action and for O. Chiral symmetry of Sy implies that
all insertions of O(a) counterterms vanish:

¢ — 757#7 1; — _1575 — (S07 Sl) — (S()a _Sl)
Assume that O is even under a 5 transformation = 00 is odd.
<Osl>cont _ O _ <6O>cont.

O(a) ambiguity of chiral limit does not matter, due to (O))°"t = 0
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The Schrodinger functional and O(a) improvement

The Schrodinger functional is the functional integral on a hyper cylinder,

Z = / e o
fields

with periodic boundary conditions in spatial directions and Dirichlet conditions in time.
With Py = 1(1 £ ),

P+¢(37) ro=0 — P, P—w(x) ro=T — pl7
?E(ZE)P_ ro=0 — 1z &(x)P—F ro=T — ﬁla
Ak(x) xo=0 — Ck7 Ak(x) xo=T — C]/gv

Correlation functions are then defined as usual

<O>(pi) = {Z_l Oe_s}
fields P

:p’:O, ﬁ:ﬁ/:O ,C:C/:()
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O may contain quark boundary fields

(%) = P = 55 o
- ; )
) = )Py = —50 ime | 5

e Problem: the ~5 field transformation switches the projectors of the quark b.c.’s: The
boundary conditions, like mass terms, break chiral symmetry and define a direction in

chiral flavour space.

= ~5-transformation:

(O) = (O, {(OS1)Y = —(0Si £0

(Py) —

= large cutoff effects cancelled by cg even in the chiral limit!



Possible solution:

e supplement the 5 transformation with a flavour permutation

V= =gy, = —PysT!

e change quark boundary projectors, such that they commute with y57!, e.g.

P %(1 + Yo7 ) Q4+ %(1 + ivY5T )

observe: (Q+ can be obtained by chirally rotating P+ b.c.’s

e In the free theory the (Q+ boundary conditions can be implemented using an orbifold
construction (S. '05).= teaches us how to modify the Wilson-Dirac operator near the
time boundaries:



Wilson-Dirac operator as a difference operator in time:
Dwip(z) = —P_U(z,0)(zo+ a,x) + Ki(z) — PLU(zo — a,x) " (xg — a, %)

Kiy(x) = <1 + amg + %Z {a(V,€ + Vi)ve — QQVZVk}> Y(x)

k=1

3
—|_ (3:3\7\/%CL2 Z UuyFuu(x)w(w%
p,v=0

There are 3 variants of the orbifold construction, depending on whether the reflection is
introduced about g = 0 or with an O(a) offset at xg = +a/2.

With O(a) offset +a/2, one obtains
(—U(z,0)P_t¢(z + a0) + (K 4+ iysm3P_)p(z)  if 2o = a,

aDw(x) = < aDwy(x) ifa <29 <T —a,
(K 4 iy Pr)y(z) — Uz — a0)t P yp(x — al) for zo =T — a.

dynamical field variables: ¢ (x) for 0 < x¢o < T (as in standard SF)
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SF boundary conditions and chiral rotations

Consider isospin doublets ¢’ and 1’ satisfying homogeneous SF boundary conditions
(Px = 5(1+ 1)),

P+¢/(5E)’x0:0 — 07 P—wl(aj)lx():’f — Oa

V' (2)P_|zy=0 = 0, V' (2)Py|pg—1 = 0.

perform a chiral field rotation,

V' =R(a)y, ¢ =vR(a)  R(a)=exp(iaysr®/2

the rotated fields satisfy chirally rotated boundary conditions

Py (a)p(z)]z=0 = 0, P_(a)p(z)|z=r = 0,

Y(2)v0P-()]zg=0 = 0, Y (x)voPr(a)|zg=T = 0,

with the projectors
Pyi(a) = 5 [1 +yoexp(iaysT)] .
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Special cases of o = 0, 7/2:

PL(0) = Py, PL(7/2)=Q+ = %(1 + ivoys7°),

Consider the action

T L B
Sytmapal = [ dao [ @)D+ m + st (@),

and label correlation functions with (m, g, P+). Performing the change of variables in
the functional integral:

<O[¢7 ILD(m,qu,Pi) — <O[R(O‘)w7 &R(a)b(m,ﬁq,]ﬁ:(a))

m = MCOSQ — [igSIN K

~

g = msSIna -+ [, COS .

Boundary quark fields can be included by replacing

C(X) — X(Ov X)P+ C(X) — P—X(Ov X)



e The special case of interest here:

(O, Y]} (m,0,gx) = (O[R(=m/2)1), Y R(=7/2)]) (0,—m,Ps)»

= the standard mass in the rotated SF corresponds to a (negative) twisted mass
parameter in the standard SF.

e translate correlation functions from the rotated SF to the standard SF:

g8(z0)s = — (X*()QL), Q% — / Py / Bz E(y)7smQul ()

and find, e.g.

11 pl11 12 11 12
gp = Jp > gv — —JA gA__V

e Having both projectors in the boundary sources Q% can be used to check whether the
boundary conditions are satisfied as expected



Symmetries and Counterterms

In a massless theory in finite volume the identification of flavour and chiral symmetries
IS a mere convention!

e take the standard Schrodinger functional with projectors Py as SU(2) flavour and
parity symmetric reference basis (the “physical” basis) Note: the y57! transformation
ensuring automatic bulk O(a) improvement is interpreted as a discrete flavour
symmetry.

e The symmetries in the rotated SF are the same as in twisted mass QCD, in particular
there is C, (P,T) x 7! and the hermiticity property

1 1
V57 Dy st = Dy
The determinant is real and can be shown to be positive!

e The free theory implements the correct boundary conditions, as can be checked by
computing the free propagator
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Dimension 3 counterterms

Dimension 3 operators allowed by the symmetries:

O1 = YiysT*Y = P7Q+¢ — Py0Q—1.

— multiplicative renormalization of ¢(,’ and (,(’; like in standard SF, vanishes for
homogeneous boundary conditions.

2 further operators:

Oy = YQ+1), O3 = PQ_1p

o 57 -odd = break flavour and parity symmetry! These must be finite counterterms,
l.e. their renormalisation constants z¢, z¢ does not depend on the renormalisation
scale!

e consist of either only Dirichlet or only dynamical components = only one is needed at
either boundary, the other will only be needed in some disconnected quark diagrams
(can be avoided).
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e With homogeneous b.c.'s O = O(a) when inserted near the boundary at xp = 0 =

one may choose 1) = Oy + O3 and implement it at either boundary by rescaling the
mass term at o = a and xg =1 — a, by adding

S = (Zf — 1) Z (Tzw‘xoza + ’(E'(Mx():T—a)

X

to the action.

e expectation: once z is tuned correctly, flavour and parity and thus the y57'-symmetry
is realised, along with bulk O(a) improvement.

e Observation: =z can be seen to generate a chiral rotation, it corresponds to a
renormalisation of the angle « in the projectors P, («) away from the value a = /2.
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There are 8 operators of dimension 4

O1 = VQivDit) — ¥ DpysQ 10,

Os = ¥ Q Dyt — P DyyeQ_1,

Os = QDo — ¥ DoyoQ1b,

O7 = $Q_vDyb — P DoypQ_1,

Os = ©QiDoa+ P DyQit,

Oy = QDo+ v DoQ 1,
O = Q0D + ¥ Dy Q49
O = % Q07D + % DiyryoQ—y.

There are 5 relations: 4 equations of motion, 1 from total derivative:
Oy =—-0g, O5=-07 0s=-019, Og=-011, 0O10—011 =0 (Y YivsT’)

I.e. one ends up with 3 counterterms; however, Og_q7 are 7571—odd, so that only 2 are
needed, analogous to ¢g, ¢; in standard SF!
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Warning:

The set-up with the a/2 offset means that the time boundaries are at zg = a,T — a.

Defining the quark boundary fields ¢, at xg = a too, may lead to contact terms and
ruin the correspondence to the standard SF:

Set o = /4, compute the free continuum propagator S(zg, yo; & = 7/4)°°™: Then tune
z¢ in the lattice propagator to minimise

min |(S(T,T/4) — S(T,T/4; o = 7/4)°™| :

One finds that for zy = 1.553.. there is a minimum which goes to zero as a*. Trying
the same for

min |(S(T,a) — S(T,0; o = 7/4)°°™ :

this does not work! However, for
min |(S(T,2a) — S(T,0; o = 7/4)°°™| :
this works again (with corrections of O(a).
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Conclusions and Outlook

Chirally rotated SF boundary conditions for Wilson quarks are useful to improve the
control over the continuum limit for step-scaling functions, or to avoid cg, for the
running coupling.

this requires the usual tuning to the critical mass (from the PCAC relation), and of
the additional dimension 3 operator, by imposing flavour and parity symmetry, e.g.
through

g (T/2)- =0

Once the tuning is carried out, the boundary O(a) effects in most correlation functions
are parameterised by ¢; and ds which is equivalent to ¢; in the standard SF.

The precise framework to be used is being optimised as we speak...

A non-perturbative (quenched) study has been initiated (cf. talk by B. Leder) and a
corresponding 1-loop perturbative calculation has been started.
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