A perturbative study of the chirally rotated Schrödinger Functional

Stefan Sint, Trinity College Dublin

* Motivation, automatic $\mathrm{O}(a)$ improvement in finite volume
* Schrödinger functional boundary conditions and automatic O(a)improvement
* The chirally rotated Schrödinger functional
* Symmetries and $d=3,4$ boundary counterterms
* Conclusions and outlook

Lattice 2008, Williamsburg, VA, July 13-19, 2008

Motivation

The Schrödinger functional is a tool to address the non-perturbative renormalization problem of QCD

- definition of finite volume schemes for QCD parameters and renormalization constants,
- gauge invariant, mass-independent, good numerical signals, feasable perturbation theory
- $\mathrm{O}(a)$ cutoff effects induced by boundaries: $\operatorname{tr} F_{0 k} F_{0 k}, \quad \operatorname{tr} F_{i k} F_{i k}, \quad \bar{\psi} \gamma_{0} D_{0} \psi, \ldots$
- Wilson quarks require the bulk $\mathrm{O}(a)$ counterterms to action and operators, despite $m=0$!
- Automatic $\mathrm{O}(a)$ improvement is incompatible with standard SF b.c's; eliminate bulk $\mathrm{O}(a)$ effects by a chiral rotation of the Schrödinger functional (S. '05):
- $\mathrm{O}(a)$ effects cancelled by a couple of boundary $\mathrm{O}(a)$ counterterms
- better control of continuum running of 4-quark operators, higher twist operators,...
$-\mathrm{O}(a)$ improvement of the running coupling without c_{sw}.

$\mathbf{O}(a)$ improvement in finite volume and in the chiral limit

Consider massless lattice QCD on a torus with some kind of periodic b.c.'s: Cutoff dependence of renormalized correlation functions is described by Symanzik's effective continuum theory:

$$
\begin{aligned}
& S_{\mathrm{eff}}=S_{0}+a S_{1}+O\left(a^{2}\right) \\
& \langle O\rangle=\langle O\rangle^{\mathrm{cont}}+a\left\langle S_{1} O\right\rangle^{\mathrm{cont}}+a\langle\delta O\rangle^{\mathrm{cont}}+O\left(a^{2}\right)
\end{aligned}
$$

$S_{1}, \delta O: \mathrm{O}(a)$ counterterms for the action and for O. Chiral symmetry of S_{0} implies that all insertions of $\mathrm{O}(a)$ counterterms vanish:

$$
\psi \rightarrow \gamma_{5} \psi, \quad \bar{\psi} \rightarrow-\bar{\psi} \gamma_{5} \quad \Rightarrow \quad\left(S_{0}, S_{1}\right) \rightarrow\left(S_{0},-S_{1}\right)
$$

Assume that O is even under a γ_{5} transformation $\Rightarrow \delta O$ is odd.

$$
\left\langle O S_{1}\right\rangle^{\mathrm{cont}}=0=\langle\delta O\rangle^{\mathrm{cont}} .
$$

$\mathrm{O}(a)$ ambiguity of chiral limit does not matter, due to $\langle O \bar{\psi} \psi\rangle^{\text {cont }}=0$

The Schrödinger functional and $\mathbf{O}(a)$ improvement

The Schrödinger functional is the functional integral on a hyper cylinder,

$$
\mathcal{Z}=\int_{\text {fields }} \mathrm{e}^{-S}
$$

with periodic boundary conditions in spatial directions and Dirichlet conditions in time. With $P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{0}\right)$,

$$
\begin{array}{rlrl}
\left.P_{+} \psi(x)\right|_{x_{0}=0} & =\rho, & \left.P_{-} \psi(x)\right|_{x_{0}=T} & =\rho^{\prime}, \\
\left.\bar{\psi}(x) P_{-}\right|_{x_{0}=0} & =\bar{\rho}, & \left.\bar{\psi}(x) P_{+}\right|_{x_{0}=T}=\bar{\rho}^{\prime}, \\
\left.A_{k}(x)\right|_{x_{0}=0} & =C_{k}, & \left.A_{k}(x)\right|_{x_{0}=T} & =C_{k}^{\prime},
\end{array}
$$

Correlation functions are then defined as usual

$$
\langle O\rangle_{\left(P_{ \pm}\right)}=\left\{Z^{-1} \int_{\text {fields }} O \mathrm{e}^{-S}\right\}_{\rho=\rho^{\prime}=0 ; \bar{\rho}=\bar{\rho}^{\prime}=0 ; C=C^{\prime}=0}
$$

O may contain quark boundary fields

$$
\begin{aligned}
\zeta(\mathbf{x}) \equiv P_{-} \zeta(\mathbf{x}) & =\frac{\delta}{\delta \bar{\rho}(\mathbf{x})} \\
\bar{\zeta}(\mathbf{x}) \equiv \bar{\zeta}(\mathbf{x}) P_{+} & =-\frac{\delta}{\delta \rho(\mathbf{x})}
\end{aligned}
$$

- Problem: the γ_{5} field transformation switches the projectors of the quark b.c.'s: The boundary conditions, like mass terms, break chiral symmetry and define a direction in chiral flavour space.
$\Rightarrow \gamma_{5}$-transformation:

$$
\langle O\rangle_{\left(P_{ \pm}\right)}^{\text {cont }}=\langle O\rangle_{\left(P_{\mp}\right)}^{\text {cont }}, \quad\left\langle O S_{1}\right\rangle_{\left(P_{ \pm}\right)}^{\text {cont }}=-\left\langle O S_{1}\right\rangle_{\left(P_{\mp}\right)}^{\text {cont }} \neq 0
$$

\Rightarrow large cutoff effects cancelled by c_{sw} even in the chiral limit!

Possible solution:

- supplement the γ_{5} transformation with a flavour permutation

$$
\psi \rightarrow \psi^{\prime}=\gamma_{5} \tau^{1} \psi, \quad \bar{\psi} \rightarrow-\bar{\psi} \gamma_{5} \tau^{1}
$$

- change quark boundary projectors, such that they commute with $\gamma_{5} \tau^{1}$, e.g.

$$
\mathcal{P}_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{0} \tau^{3}\right), \quad Q_{ \pm}=\frac{1}{2}\left(1 \pm i \gamma_{0} \gamma_{5} \tau^{3}\right)
$$

observe: $Q_{ \pm}$can be obtained by chirally rotating $P_{ \pm}$b.c.'s

- In the free theory the $Q_{ \pm}$boundary conditions can be implemented using an orbifold construction (S. '05). \Rightarrow teaches us how to modify the Wilson-Dirac operator near the time boundaries:

Wilson-Dirac operator as a difference operator in time:

$$
\begin{aligned}
D_{W} \psi(x)= & -P_{-} U(x, 0) \psi\left(x_{0}+a, \mathbf{x}\right)+K \psi(x)-P_{+} U\left(x_{0}-a, \mathbf{x}\right)^{\dagger} \psi\left(x_{0}-a, \mathbf{x}\right) \\
K \psi(x)= & \left(1+a m_{0}+\frac{1}{2} \sum_{k=1}^{3}\left\{a\left(\nabla_{k}+\nabla_{k}^{*}\right) \gamma_{k}-a^{2} \nabla_{k}^{*} \nabla_{k}\right\}\right) \psi(x) \\
& +c_{\mathrm{sw}} \frac{i}{4} a^{2} \sum_{\mu, \nu=0}^{3} \sigma_{\mu \nu} \hat{F}_{\mu \nu}(x) \psi(x),
\end{aligned}
$$

There are 3 variants of the orbifold construction, depending on whether the reflection is introduced about $x_{0}=0$ or with an $\mathrm{O}(a)$ offset at $x_{0}= \pm a / 2$.

With $\mathrm{O}(a)$ offset $+a / 2$, one obtains

$$
a \mathcal{D}_{W} \psi(x)= \begin{cases}-U(x, 0) P_{-} \psi(x+a \hat{\mathbf{0}})+\left(K+i \gamma_{5} \tau^{3} P_{-}\right) \psi(x) & \text { if } x_{0}=a, \\ a D_{W} \psi(x) & \text { if } a<x_{0}<T-a, \\ \left(K+i \gamma_{5} \tau^{3} P_{+}\right) \psi(x)-U(x-a \hat{\mathbf{0}})^{\dagger} P_{+} \psi(x-a \hat{\mathbf{0}}) & \text { for } x_{0}=T-a .\end{cases}
$$

dynamical field variables: $\psi(x)$ for $0<x_{0}<T$ (as in standard SF)

SF boundary conditions and chiral rotations

Consider isospin doublets ψ^{\prime} and $\bar{\psi}^{\prime}$ satisfying homogeneous SF boundary conditions $\left(P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{0}\right)\right)$,

$$
\begin{array}{ll}
\left.P_{+} \psi^{\prime}(x)\right|_{x_{0}=0}=0, & \left.P_{-} \psi^{\prime}(x)\right|_{x_{0}=T}=0, \\
\left.\bar{\psi}^{\prime}(x) P_{-}\right|_{x_{0}=0}=0, & \left.\bar{\psi}^{\prime}(x) P_{+}\right|_{x_{0}=T}=0 .
\end{array}
$$

perform a chiral field rotation,

$$
\psi^{\prime}=R(\alpha) \psi, \quad \bar{\psi}^{\prime}=\bar{\psi} R(\alpha) \quad R(\alpha)=\exp \left(i \alpha \gamma_{5} \tau^{3} / 2\right.
$$

the rotated fields satisfy chirally rotated boundary conditions

$$
\begin{aligned}
\left.P_{+}(\alpha) \psi(x)\right|_{x_{0}=0} & =0, & \left.P_{-}(\alpha) \psi(x)\right|_{x_{0}=T} & =0, \\
\left.\bar{\psi}(x) \gamma_{0} P_{-}(\alpha)\right|_{x_{0}=0} & =0, & \left.\bar{\psi}(x) \gamma_{0} P_{+}(\alpha)\right|_{x_{0}=T} & =0,
\end{aligned}
$$

with the projectors

$$
P_{ \pm}(\alpha)=\frac{1}{2}\left[1 \pm \gamma_{0} \exp \left(i \alpha \gamma_{5} \tau^{3}\right)\right] .
$$

Special cases of $\alpha=0, \pi / 2$:

$$
P_{ \pm}(0)=P_{ \pm}, \quad P_{ \pm}(\pi / 2) \equiv Q_{ \pm}=\frac{1}{2}\left(1 \pm i \gamma_{0} \gamma_{5} \tau^{3}\right),
$$

Consider the action

$$
S_{f}\left[m, \mu_{\mathrm{q}}\right]=\int_{0}^{T} \mathrm{~d} x_{0} \int_{0}^{L} \mathrm{~d}^{3} \mathbf{x} \bar{\psi}^{\prime}(x)\left(\not D+m+i \mu_{\mathrm{q}} \gamma_{5} \tau^{3}\right) \psi^{\prime}(x),
$$

and label correlation functions with ($m, \mu_{\mathrm{q}}, P_{ \pm}$). Performing the change of variables in the functional integral:

$$
\begin{aligned}
\langle O[\psi, \bar{\psi}]\rangle_{\left(m, \mu_{\mathrm{q}}, P_{ \pm}\right)} & =\langle O[R(\alpha) \psi, \bar{\psi} R(\alpha)]\rangle_{\left(\tilde{m}, \tilde{\mu}_{q}, P_{ \pm}(\alpha)\right)} \\
\tilde{m} & =m \cos \alpha-\mu_{q} \sin \alpha \\
\tilde{\mu}_{q} & =m \sin \alpha+\mu_{q} \cos \alpha
\end{aligned}
$$

Boundary quark fields can be included by replacing

$$
\bar{\zeta}(\mathbf{x}) \leftrightarrow \bar{\chi}(0, \mathbf{x}) P_{+} \quad \zeta(\mathbf{x}) \leftrightarrow P_{-} \chi(0, \mathbf{x})
$$

- The special case of interest here:

$$
\langle O[\psi, \bar{\psi}]\rangle_{\left(m, 0, Q_{ \pm}\right)}=\langle O[R(-\pi / 2) \psi, \bar{\psi} R(-\pi / 2)]\rangle_{\left(0,-m, P_{ \pm}\right)},
$$

\Rightarrow the standard mass in the rotated SF corresponds to a (negative) twisted mass parameter in the standard SF.

- translate correlation functions from the rotated SF to the standard SF:

$$
g_{X}^{a b}\left(x_{0}\right)_{ \pm}=-\left\langle X^{a}(x) \mathcal{Q}_{ \pm}^{b}\right\rangle, \quad \mathcal{Q}_{ \pm}^{a}=\int \mathrm{d}^{3} \mathbf{y} \int \mathrm{~d}^{3} \mathbf{z} \bar{\zeta}(\mathbf{y}) \gamma_{5} \tau^{a} Q_{ \pm} \zeta(\mathbf{z})
$$

and find, e.g.

$$
g_{\mathrm{P}}^{11}=f_{\mathrm{P}}^{11}, \quad g_{\mathrm{V}}^{12}=-f_{\mathrm{A}}^{11}, \quad g_{\mathrm{A}}^{11}=-f_{\mathrm{V}}^{12}
$$

- Having both projectors in the boundary sources \mathcal{Q}^{a} can be used to check whether the boundary conditions are satisfied as expected

Symmetries and Counterterms

In a massless theory in finite volume the identification of flavour and chiral symmetries is a mere convention!

- take the standard Schrödinger functional with projectors $P_{ \pm}$as $\mathrm{SU}(2)$ flavour and parity symmetric reference basis (the "physical" basis) Note: the $\gamma_{5} \tau^{1}$ transformation ensuring automatic bulk $\mathrm{O}(a)$ improvement is interpreted as a discrete flavour symmetry.
- The symmetries in the rotated SF are the same as in twisted mass QCD, in particular there is $C,(P, T) \times \tau^{1}$ and the hermiticity property

$$
\gamma_{5} \tau^{1} \mathcal{D}_{W} \gamma_{5} \tau^{1}=\mathcal{D}_{W}^{\dagger}
$$

The determinant is real and can be shown to be positive!

- The free theory implements the correct boundary conditions, as can be checked by computing the free propagator

Dimension 3 counterterms

Dimension 3 operators allowed by the symmetries:

$$
\mathcal{O}_{1}=\bar{\psi} i \gamma_{5} \tau^{3} \psi=\bar{\psi} \gamma_{0} Q_{+} \psi-\bar{\psi} \gamma_{0} Q_{-} \psi .
$$

\rightarrow multiplicative renormalization of ζ, ζ^{\prime} and $\bar{\zeta}, \bar{\zeta}^{\prime}$; like in standard SF , vanishes for homogeneous boundary conditions.

2 further operators:

$$
\mathcal{O}_{2}=\bar{\psi} Q_{+} \psi, \quad \mathcal{O}_{3}=\bar{\psi} Q_{-} \psi
$$

- $\gamma_{5} \tau^{1}$-odd \Rightarrow break flavour and parity symmetry! These must be finite counterterms, i.e. their renormalisation constants z_{f}, \tilde{z}_{f} does not depend on the renormalisation scale!
- consist of either only Dirichlet or only dynamical components \Rightarrow only one is needed at either boundary, the other will only be needed in some disconnected quark diagrams (can be avoided).
- With homogeneous b.c.'s $\mathcal{O}_{2}=\mathrm{O}(a)$ when inserted near the boundary at $x_{0}=0 \Rightarrow$ one may choose $\bar{\psi} \psi=\mathcal{O}_{2}+\mathcal{O}_{3}$ and implement it at either boundary by rescaling the mass term at $x_{0}=a$ and $x_{0}=T-a$, by adding

$$
\delta S=\left(z_{f}-1\right) \sum_{\mathrm{x}}\left(\left.\bar{\psi} \psi\right|_{x_{0}=a}+\left.\bar{\psi} \psi\right|_{x_{0}=T-a}\right)
$$

to the action.

- expectation: once z_{f} is tuned correctly, flavour and parity and thus the $\gamma_{5} \tau^{1}$-symmetry is realised, along with bulk $\mathrm{O}(a)$ improvement.
- Observation: z_{f} can be seen to generate a chiral rotation, it corresponds to a renormalisation of the angle α in the projectors $P_{ \pm}(\alpha)$ away from the value $\alpha=\pi / 2$.

There are 8 operators of dimension 4

$$
\begin{aligned}
\mathcal{O}_{4} & =\bar{\psi} Q_{+} \gamma_{k} D_{k} \psi-\bar{\psi} \overleftarrow{D}_{k} \gamma_{k} Q_{+} \psi \\
\mathcal{O}_{5} & =\bar{\psi} Q_{-} \gamma_{k} D_{k} \psi-\bar{\psi} \overleftarrow{D}_{k} \gamma_{k} Q_{-} \psi \\
\mathcal{O}_{6} & =\bar{\psi} Q_{+} \gamma_{0} D_{0} \psi-\bar{\psi} \overleftarrow{D}_{0} \gamma_{0} Q_{+} \psi \\
\mathcal{O}_{7} & =\bar{\psi} Q_{-} \gamma_{0} D_{0} \psi-\bar{\psi} \overleftarrow{D}_{0} \gamma_{k} Q_{-} \psi \\
\mathcal{O}_{8} & =\bar{\psi} Q_{+} D_{0} \psi a+\bar{\psi} \overleftarrow{D}_{0} Q_{+} \psi \\
\mathcal{O}_{9} & =\bar{\psi} Q_{-} D_{0} \psi+\bar{\psi} \overleftarrow{D}_{0} Q_{-} \psi \\
\mathcal{O}_{10} & =\bar{\psi} Q_{+} \gamma_{0} \gamma_{k} D_{k} \psi+\bar{\psi} \overleftarrow{D}_{k} \gamma_{k} \gamma_{0} Q_{+} \psi \\
\mathcal{O}_{11} & =\bar{\psi} Q_{-} \gamma_{0} \gamma_{k} D_{k} \psi+\bar{\psi} \overleftarrow{D}_{k} \gamma_{k} \gamma_{0} Q_{-} \psi
\end{aligned}
$$

There are 5 relations: 4 equations of motion, 1 from total derivative:
$\mathcal{O}_{4}=-\mathcal{O}_{6}, \quad \mathcal{O}_{5}=-\mathcal{O}_{7}, \quad \mathcal{O}_{8}=-\mathcal{O}_{10}, \quad \mathcal{O}_{9}=-\mathcal{O}_{11}, \quad \mathcal{O}_{10}-\mathcal{O}_{11}=\partial_{k}\left(\bar{\psi} \gamma_{k} i \gamma_{5} \tau^{3} \psi\right)$
i.e. one ends up with 3 counterterms; however, \mathcal{O}_{8-11} are $\gamma_{5} \tau^{1}$-odd, so that only 2 are needed, analogous to $\tilde{c}_{s}, \tilde{c}_{t}$ in standard SF!

Warning:

The set-up with the $a / 2$ offset means that the time boundaries are at $x_{0}=a, T-a$. Defining the quark boundary fields $\zeta, \bar{\zeta}$ at $x_{0}=a$ too, may lead to contact terms and ruin the correspondence to the standard SF:

Set $\alpha=\pi / 4$, compute the free continuum propagator $S\left(x_{0}, y_{0} ; \alpha=\pi / 4\right)^{\text {cont. }}$. Then tune z_{f} in the lattice propagator to minimise

$$
\min \mid\left(S(T, T / 4)-S(T, T / 4 ; \alpha=\pi / 4)^{\mathrm{cont}} \mid:\right.
$$

One finds that for $z_{f}=1.553$.. there is a minimum which goes to zero as a^{2}. Trying the same for

$$
\min \mid\left(S(T, a)-S(T, 0 ; \alpha=\pi / 4)^{\mathrm{cont}} \mid:\right.
$$

this does not work! However, for

$$
\min \mid\left(S(T, 2 a)-S(T, 0 ; \alpha=\pi / 4)^{\mathrm{cont}} \mid:\right.
$$

this works again (with corrections of $\mathrm{O}(a)$.

Conclusions and Outlook

- Chirally rotated SF boundary conditions for Wilson quarks are useful to improve the control over the continuum limit for step-scaling functions, or to avoid c_{sw} for the running coupling.
- this requires the usual tuning to the critical mass (from the PCAC relation), and of the additional dimension 3 operator, by imposing flavour and parity symmetry, e.g. through

$$
g_{\mathrm{A}}^{11}(T / 2)_{-}=0
$$

- Once the tuning is carried out, the boundary $\mathrm{O}(a)$ effects in most correlation functions are parameterised by c_{t} and d_{s} which is equivalent to \tilde{c}_{t} in the standard SF.
- The precise framework to be used is being optimised as we speak...
- A non-perturbative (quenched) study has been initiated (cf. talk by B. Leder) and a corresponding 1-loop perturbative calculation has been started.

