f_K/f_π in full QCD

Stephan Dürr

von Neumann Institute for Computing FZ Jülich and DESY Zeuthen

in collaboration with

Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, L. Lellouch, T. Kurth, T. Lippert, K.K. Szabo, G. Vulvert [Budapest-Marseille-Wuppertal Collaboration]

Lattice 08, Williamsburg VA, July 14-19, 2008

Introduction: why f_K/f_{π} ?

W.J. Marciano, PRL 93 231803 (2004) [hep-ph/0402299]:

- $|V_{ud}|$ is known, from super-allowed nuclear β -decays, with 0.03% precision.
- $|V_{us}|$ is much less precisely known, but can be linked to $|V_{ud}|$ via a relation involving f_K/f_{π} , with everything else known rather accurately:

$$\frac{\Gamma(K \to l\bar{\nu}_l)}{\Gamma(\pi \to l\bar{\nu}_l)} = \frac{|V_{\rm us}|^2}{|V_{\rm ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{M_K(1 - m_l^2/M_K^2)^2}{M_\pi(1 - m_l^2/M_\pi^2)^2} \left\{1 + \frac{\alpha}{\pi}(C_K - C_\pi)\right\}$$

- CKM unitarity $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ (with $|V_{ub}|$ being negligibly small) is genuine to the SM; any deviation is a *model-independent* signal of BSM physics.
- \implies calculate f_K/f_{π} in $N_f = 2+1$ QCD (with quark masses extrapolated to the physical point) on the lattice; the precision attained gives the precision of $|V_{us}|$.

Setup: dominant sources of uncertainty

What we do to control systematic uncertainties ("full QCD shopping list"):

- (a) $N_f = 2+1$ with exact algorithm (and universality class of QCD)
- (b) complete baryon octet/decuplet spectrum to set the scale
- (c) large spatial volumes $(M_{\pi}L \ge 4)$ to assure small finite volume effects
- (d) sufficiently chiral data ($M_{\pi} \simeq 190 \,\mathrm{MeV}$) for small extrapolation range
- (e) no less than 3 lattice spacings to assure controlled continuum extrapolation

• action:

tree-level $O(a^2)$ improved Symanzik glue and tree-level O(a) improved fat-clover quarks [6 levels of $\alpha = 0.11$ stout smearing, both in covariant derivative and in $F_{\mu\nu}$]

• algorithm:

HMC/RHMC with even-odd preconditioning, multiple time-scale Omelyan integration, Hasenbusch acceleration and mixed precision solver [Clark et al '06, Sexton Weingarten '92, Omelyan et al '03, Hasenbusch '01, Urbach et al '06, BMW '08]

• resources:

BG/L@FZJ: 2005-2008, 8*2048=16384 processors PowerPC440@700MHz (2.8 GFlops each), 1GB per node, 3D torus network, 46/37 Tflops peak/sustained

BG/P@FZJ: since 2008, 16·4096=65536 processors PowerPC450@850MHz (3.4 GFlops each), 2GB per node, 3D torus network, 223/180 Tflops peak/sustained

Setup: setting m_{ud} , m_s and a^{-1}

We set m_{ud} , m_s , a^{-1} through M_{π} , M_K , M_{Ξ} (or M_{Ω}).

We fix bare strange mass such that renormalized m_s is correct at physical m_{ud} point:

 \implies extract f_K/f_{π} from "unitary" data and extrapolate to the physical mass point! S. Dürr, NIC Lattice 08, Williamsburg VA, July 14-19, 2008 4

Analysis: combined fits

Excellent data quality even on our lightest ensemble $(M_{\pi} \simeq 190 \,\mathrm{MeV}$ and $L \simeq 4.0 \,\mathrm{fm})$: Point_[from]_Gauss, 3.57_m0.0483_m0.007_48x64 Gauss_[from]_Gauss, 3.57_m0.0483_m0.007_48x64 -PP ·PΡ IPA_ 10^{3} |A⁰b| 10⁸ A₀A₀ 10^{2} 10⁷ 10¹ 10^{6} 5 10 15 20 25 30 5 10 15 20 25 30 0 0 $\cosh(.)/\sinh(.)$ for -PP, $|PA_0|$, $|A_0P|$, A_0A_0 with Gauss source and local/Gauss sink $C_{Xx,Yy}(t) = c_0 e^{-M_0 t} \pm c_0 e^{-M_0(T-t)} + \dots$ with $X, Y \in \{P, A_0\}$ and $x, y \in \{\log, gau\}$ $\longrightarrow c_0 = G\tilde{G}, G\tilde{F}, F\tilde{G}, F\tilde{F}$ (left) and $c_0 = \tilde{G}\tilde{G}, \tilde{G}\tilde{F}, \tilde{F}\tilde{G}, \tilde{F}\tilde{F}$ (right) ightarrow combined 1-state fit of 8 correlators with 5 parameters yields $M_{\pi}, F_{\pi}, m_{
m PCAC}$

Analysis: chiral extrapolation

• Chiral SU(3) formula:

$$\frac{F_K}{F_\pi} = 1 + \frac{1}{32\pi^2 F_0^2} \left\{ \frac{5}{4} M_\pi^2 \log(\frac{M_\pi^2}{\mu^2}) - \frac{1}{2} M_K^2 \log(\frac{M_K^2}{\mu^2}) - [M_K^2 - \frac{1}{4} M_\pi^2] \log(\frac{4M_K^2 - M_\pi^2}{3\mu^2}) \right\} + \frac{4}{F_0^2} [M_K^2 - M_\pi^2] L_5$$

• Chiral SU(2)_plus_strange formula [arXiv:0804.0473 by RBC/UKQCD, simplified]:

$$\frac{F_K}{F_{\pi}} = \frac{F_K}{F_{\pi}} \bigg|_{m_{ud}=0} \left\{ 1 + \frac{5}{8} \frac{M_{\pi}^2}{(4\pi F)^2} \log\left(\frac{M_{\pi}^2}{\Lambda^2}\right) \right\}$$

• Polynomial expansion $F_{\pi}/F_{K} = d_{0} + d_{1}M_{\pi} + d_{2}M_{\pi}^{2}$ (e.g. around 300 MeV) at fixed physical m_{s} , together with constraint $F_{K} = F_{\pi}$ at $M_{K} = M_{\pi}$, suggests:

$$\frac{F_K}{F_\pi} = \frac{c_0 + c_1 M_K + c_2 M_K^2}{c_0 + c_1 M_\pi + c_2 M_\pi^2}$$

 \longrightarrow Use all of them and treat spread as indicative of systematic uncertainty !

Analysis: continuum extrapolation

Q: Should we use dedicated version of Chiral Perturbation Theory (XPT) ? A: Aoki Bär Takeda Ishikawa PRD73, 014511 (2006) for clover fermions:

$$M_{\pi}^{2} = B_{0}2m\left\{1 + \mu_{\pi} - \frac{1}{3}\mu_{\eta} + 2mK_{3} + K_{4} - \frac{H''}{F_{0}^{2}}\right\}$$

$$M_{K}^{2} = B_{0}(m + m_{s})\left\{1 + \frac{2}{3}\mu_{\eta} + (m + m_{s})K_{3} + K_{4} - \frac{H''}{F_{0}^{2}}\right\}$$

$$F_{\pi}^{2} = F_{0}\left\{1 - 2\mu_{\pi} - \mu_{K} + 2mK_{6} + K_{7} - \frac{H'}{F_{0}^{2}}\right\}$$

$$M_{K}^{2} = F_{0}\left\{1 - \frac{3}{4}\mu_{\pi} - \frac{3}{2}\mu_{K} - \frac{3}{4}\mu_{\eta} + (m + m_{s})K_{6} + K_{7} - \frac{H'}{F_{0}^{2}}\right\}$$

 \longrightarrow Redefine $B_0\{1 - H''/F_0^2\} \rightarrow B'_0$ and terms with H'' will disappear

 \longrightarrow Redefine $F_0 \{1 - H'/F_0^2\} \rightarrow F'_0$ and terms with H' will disappear

Conjecture: dedicated WXPT calculations for M_P, F_P not needed; with $m \equiv m_{PCAC}$ effects of finite lattice spacing are taken into account via augmenting all low-energy constants by factors of $(1 + \text{const } a^2)$ to any chiral order. (not needed below)

Analysis: infinite volume extrapolation

• Finite volume effects on F_K, F_π are known at the 2-loop level [Colangelo et al. '05]

$$\frac{F_{\pi}(L)}{F_{\pi}} = 1 + \sum_{n=1}^{\infty} \frac{m(n)}{\sqrt{n}} \frac{1}{M_{\pi}L} 1 \frac{M_{\pi}^2}{(4\pi F_{\pi})^2} \left[I_{F_{\pi}}^{(2)} + \frac{M_{\pi}^2}{(4\pi F_{\pi})^2} I_{F_{\pi}}^{(4)} + \dots \right]$$

$$\frac{F_K(L)}{F_K} = 1 + \sum_{n=1}^{\infty} \frac{m(n)}{\sqrt{n}} \frac{1}{M_{\pi}L} \frac{F_{\pi}}{F_K} \frac{M_{\pi}^2}{(4\pi F_{\pi})^2} \left[I_{F_K}^{(2)} + \frac{M_K^2}{(4\pi F_{\pi})^2} I_{F_K}^{(4)} + \dots \right]$$

with $I_{F_{\pi}}^{(2)} = -4K_1(\sqrt{n} M_{\pi}L)$ and $I_{F_K}^{(2)} = -\frac{3}{2}K_1(\sqrt{n} M_{\pi}L)$, where $K_1(.)$ is a Bessel function of the second kind, and lengthy expressions for $I_{F_{\pi}}^{(4)}, I_{F_K}^{(4)}$.

• In the ratio finite volume effects cancel partly; evident from the 1-loop formula

$$\frac{F_K(L)}{F_\pi(L)} = \frac{F_K}{F_\pi} \left\{ 1 + \sum_{n=1}^{\infty} \frac{m(n)}{\sqrt{n}} \frac{1}{M_\pi L} \frac{M_\pi^2}{(4\pi F_\pi)^2} \left[\frac{F_\pi}{F_K} I_{F_K}^{(2)} - I_{F_\pi}^{(2)} \right] \right\}$$

• We calculate $\frac{F_K(L)}{F_{\pi}(L)}/\frac{F_K}{F_{\pi}}$ at 1-loop and 2-loop level, and $F_{\pi}(L)/F_{\pi}$ at 2-loop level.

Result: combined fits

 \longrightarrow plot shows data $(M_{\pi}^2, 2M_K^2 - M_{\pi}^2) - \text{fit}(M_{\pi}^2, 2M_K^2 - M_{\pi}^2) + \text{fit}(M_{\pi}^2, [2M_K^2 - M_{\pi}^2]_{\text{phys}}).$ $\longrightarrow f_K/f_{\pi}$ scales rather nicely [we have $a^2/\text{fm}^2 = 0.0042, 0.0072, 0.0156$]. $\implies f_K/f_{\pi} = 1.18(1)(1)$ at the physical m_{ud} , in the continuum, for infinite volume.

Result: errorbars over time

Finish: update on $|V_{\rm us}|$

• Average $|V_{\rm ud}| = 0.97377(27)$ [PDG'06] and 0.97418(26) [Towner'07] to give

 $|V_{\rm ud}| = 0.97398(18)(20) = 0.97398(27)$.

• Plug experimental information $\Gamma(K \to \mu \bar{\nu}) / \Gamma(\pi \to \mu \bar{\nu}) = 1.3337(39)$ [PDG'06] and $C_K - C_\pi = -3.0 \pm 1.5$ [Marciano] into Marciano's equation (first slide); this yields

$$\frac{|V_{\rm us}|}{|V_{\rm ud}|} \frac{f_K}{f_\pi} = 0.2757(6) \; .$$

• Upon combining the previous one/two points and our value for f_K/f_π we obtain

$$|V_{\rm us}|/|V_{\rm ud}| = 0.2336(28)$$
 and $|V_{\rm us}| = 0.2276(27)$.

• Upon including $|V_{\rm ub}| = (4.31 \pm 0.30) \, 10^{-3}$ [PDG'06] we end up with

$$|V_{\rm ud}|^2 + |V_{\rm us}|^2 + |V_{\rm ub}|^2 = 1.0004(14)$$
.

BACKUP SLIDES

Backup: why smear?

Lattice 08, Williamsburg VA, July 14-19, 2008

Backup: action locality

• locality in position space: |D(x-y)| = |x-y| = |x-y|

 $|D(x,y)| < \operatorname{const} e^{-\lambda|x-y|}$ with $\lambda = O(a^{-1})$ for all couplings.

Our case: D(x,y)=0 as soon as |x-y|>1 (despite 6 smearings).

• locality in space of gauge fields: $|\delta D(x,y)/\delta A(z)| < \operatorname{const} e^{-\lambda |(x+y)/2-z|}$ with $\lambda = O(a^{-1})$ for all couplings. Our case: $\delta D(x,x)/\delta A(z) < \operatorname{const} e^{-\lambda |x-z|}$ with $\lambda \simeq 2.2a^{-1}$ for $2 \le |x-z| \le 6$.

Lattice 08, Williamsburg VA, July 14-19, 2008

Backup: algorithmic stability

No hysteresis effects and 5σ -stability in light quark mass production runs:

 \longrightarrow to monitor $1/N_{\rm CG}$ is cheaper than minimal eigenvalue of $|\gamma_5 D|$

 \longrightarrow also $R_{\rm acc}$ and $e^{-\Delta H}$ are being monitored

 \longrightarrow see arxiv:0802.2706 [BMW Collab.] for details

Backup: scaling properties

Explicit scaling test for $M_{\rm N}$ and M_{Δ} in $N_f = 3$ QCD:

 \longrightarrow clean $O(a^2)$ scaling of 6-stout action out to $a \sim 0.15 \, {\rm fm}$

 \longrightarrow see arxiv:0802.2706 [BMW Collab.] for details

Backup: octet/decuplet spectrum with extrapolation

- large volumes ($M_{\pi}L \ge 4$ maintained, larger/smaller volumes for check)
- light pions ($M_{\pi} \sim 190 \,\mathrm{MeV}$ at two lattice spacings)
- three couplings $(a \sim 0.065, 0.085, 0.125 \,\mathrm{fm})$

→ S. Krieg: The hadron spectrum in full QCD: setup and parameter selection
 → Ch. Hoelbling: The hadron spectrum in full QCD: analysis details and final result