QCD Equation of State at Non-zero Chemical Potential

S. Basak, A. Bazavov, C. Bernard, C. DeTar, W. Freeman, S. G., U.M. Heller, J.E. Hetrick,

J. Laiho, L. Levkova, J. Osborn, R. Sugar, D. Toussaint

[MILC Collaboration]

sg at indiana.edu

Outline

- Motivation
- Methodology
- Results
- Conclusions

Motivation

- Experiments at RHIC start with a baryon rich environment; hence they naturally have a non-zero chemical potential.
- Finite temperature field theory formalism easily admits a chemical potential, but we are left with a complex action and can no longer use importance sampling.
- If the chemical potential is small, we can employ the Taylor expansion method:
 - C.R. Allton et al., Phys. Rev. D 66 (2002) 074507
 - R.V. Gavai and S. Gupta, Phys. Rev. D 68 (2003) 034506

Methodology

Physical quantities of interest are Taylor expanded in the chemical potentials for light and strange quarks. For example:

$$\frac{p}{T^4} = \frac{\ln Z}{VT^3} = \sum_{n,m=0}^{\infty} c_{nm}(T) \left(\frac{\bar{\mu}_l}{T}\right)^n \left(\frac{\bar{\mu}_h}{T}\right)^m. \tag{1}$$

Only terms with n + m even appear due to CP symmetry.

$$c_{nm}(T) = \frac{1}{n!} \frac{1}{m!} \frac{N_{\tau}^3}{N_{\sigma}^3} \frac{\partial^{n+m} \ln Z}{\partial(\mu_l N_{\tau})^n \partial(\mu_h N_{\tau})^m} \bigg|_{\mu_{l,h}=0} \quad .$$
 (2)

For the interaction measure,

$$\frac{I}{T^4} = -\frac{N_t^3}{N_s^3} \frac{d\ln Z}{d\ln a} = \sum_{n,m}^{\infty} b_{nm}(T) \left(\frac{\bar{\mu}_l}{T}\right)^n \left(\frac{\bar{\mu}_h}{T}\right)^m.$$
 (3)

- Temperature dependendent coefficients $c_{nm}(T)$ and $b_{nm}(T)$ are combinations of observables that can be calculated on non-zero T ensembles, but with zero chemical potential.
- We Taylor expand up to 6th order.
- 40 fermionic observables have to be determined using stochastic estimators, as well as several gluonic observables.
- Details can be found in C. Bernard *et al.*, Phys. Rev. D 77,014503 (2008); arXiv:0710.1330 [hep-lat].
- Ensembles are generated on a line of constant physics with $m_l = 0.1m_s$ and m_s approximately the physical strange quark mass.

- Our previous work used lattices with $N_t = 4$. We now use $N_t = 6$ and compare with coarser lattices.
- It is interesting to compare the free theory for different N_t to see how the continuum limit is approached.

Next let's compare $N_t = 4$ (black) and 6 (red) for the interacting theory.

Unmixed coefficients for pressure

Comments on coefficients

- There is considerable structure at low T and then an approach to SB limit above the cross-over temperature.
- Higher coefficients are small.
- Errors grow rapidly for higher order terms.
- Errors are better controlled for $N_t = 6$.

Mixed coefficients for pressure

Unmixed coefficients for I

Mixed coefficients for I

Results

- With the coefficients in hand, we can calculate interesting quantities, such as
 - pressure
 - interaction measure
 - energy density
 - quark number density
 - quark number susceptibility
- Due to non-zero $C_{n1}(T)$ terms a non-zero strange quark density is induced even with $\mu_h = 0$. To study the $n_s = 0$ plasma, we must tune μ_h as a function of μ_l and T.
- We show change in pressure, interaction measure and energy density for various μ_l as a function of T.

Pressure with $\mu = 0$

Δ **Pressure**

Interaction measure with $\mu = 0$

Δ Interaction Measure

Energy density with $\mu = 0$

Δ Energy Density

Light quark density

Light quark susceptibility

Strange quark susceptibility

Isentropic EOS

- In a heavy-ion collision, after thermalization the system expands and cools with constant entropy.
- We would like to find the EOS with fixed ratio of entropy to baryon number.
- We calculate EOS with appropriate ratios for AGS, SPP, RHIC:

Expt	s/n_B
AGS	30
SPS	45
RHIC	300

• This requires finding trajectories in the (μ_l, μ_s, T) space with $n_s = 0$ and s/n_B as in the table.

Isentropic Pressure

Isentropic interaction measure

Isentropic energy density

Isentropic light quark density

Isentropic light quark susceptibility

Absence of a peak indicates that we are far from a critical endpoint.

Conclusions

- We have extended our sixth order Taylor expansion study of thermodynamics with chemical potential toward the continuum limit by going from $N_t = 4$ to 6.
- We compute the coefficients relevant for both pressure p and interaction measure I.
- We observe modest lattice spacing effects, with the effect of chemical potential smaller on the pressure and quark densities and susceptibilities at the smaller lattice spacing.
- We have calculated the isentropic equation of state, which is interesting for phenomenology.
- It would be interesting to extend this work to yet smaller lattice spacing and to go to lighter quark mass.
- Happy birthday, Carleton!