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Motivation

Experiments at RHIC start with a baryon rich
environment; hence they naturally have a non-zero
chemical potential.

Finite temperature field theory formalism easily admits
a chemical potential, but we are left with a complex
action and can no longer use importance sampling.

If the chemical potential is small, we can employ the
Taylor expansion method:

C.R. Allton et al., Phys. Rev. D 66 (2002) 074507
R.V. Gavai and S. Gupta, Phys. Rev. D 68 (2003)
034506
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Methodology
Physical quantities of interest are Taylor expanded in the
chemical potentials for light and strange quarks. For
example:
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For the interaction measure,
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Temperature dependendent coefficients cnm(T ) and
bnm(T ) are combinations of observables that can be
calculated on non-zero T ensembles, but with zero
chemical potential.

We Taylor expand up to 6th order.

40 fermionic observables have to be determined using
stochastic estimators, as well as several gluonic
observables.

Details can be found in C. Bernard et al., Phys. Rev. D
77,014503 (2008); arXiv:0710.1330 [hep-lat].

Ensembles are generated on a line of constant physics
with ml = 0.1ms and ms approximately the physical
strange quark mass.
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Our previous work used lattices with Nt = 4. We now
use Nt = 6 and compare with coarser lattices.

It is interesting to compare the free theory for different
Nt to see how the continuum limit is approached.

Next let’s compare Nt = 4 (black) and 6 (red) for the
interacting theory.
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Unmixed coefficients for pressure
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Comments on coefficients

There is considerable structure at low T and then an
approach to SB limit above the cross-over temperature.

Higher coefficients are small.

Errors grow rapidly for higher order terms.

Errors are better controlled for Nt = 6.
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Mixed coefficients for pressure
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Unmixed coefficients for I
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Mixed coefficients for I
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Results

With the coefficients in hand, we can calculate
interesting quantities, such as

pressure
interaction measure
energy density
quark number density
quark number susceptibility

Due to non-zero Cn1(T ) terms a non-zero strange quark
density is induced even with µh = 0. To study the ns = 0
plasma, we must tune µh as a function of µl and T .

We show change in pressure, interaction measure and
energy density for various µl as a function of T .
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Pressure withµ = 0
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∆ Pressure
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Interaction measure with µ = 0
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∆ Interaction Measure
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Energy density with µ = 0
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∆ Energy Density
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Light quark density
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Light quark susceptibility
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Strange quark susceptibility
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Isentropic EOS

In a heavy-ion collision, after thermalization the system
expands and cools with constant entropy.

We would like to find the EOS with fixed ratio of entropy
to baryon number.

We calculate EOS with appropriate ratios for AGS, SPP,
RHIC:

Expt s/nB

AGS 30
SPS 45
RHIC 300

This requires finding trajectories in the (µl,µs,T ) space
with ns = 0 and s/nB as in the table.
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Isentropic Pressure
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Isentropic interaction measure
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Isentropic energy density
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Isentropic light quark density
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Isentropic light quark susceptibility

Absence of a peak indicates that we are far from a critical
endpoint.
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Conclusions

We have extended our sixth order Taylor expansion
study of thermodynamics with chemical potential toward
the continuum limit by going from Nt = 4 to 6.

We compute the coefficients relevant for both pressure
p and interaction measure I.

We observe modest lattice spacing effects, with the
effect of chemical potential smaller on the pressure and
quark densities and susceptibilities at the smaller lattice
spacing.

We have calculated the isentropic equation of state,
which is interesting for phenomenology.

It would be interesting to extend this work to yet smaller
lattice spacing and to go to lighter quark mass.

Happy birthday, Carleton!
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