Electromagnetic splittings of hadrons

from Staggered quarks in full QCD

Subhasish Basak

Department of Physics, Indiana University, USA

 $in \ collaboration \ with \ Steven \ Gottlieb$

Lattice 2008, Williamsburg, July 14–19, 2008

Outline of this talk

- ★ Electromagnetic effects in QCD: introduction and motivation
- \star Methodology employed in the present work
- \star Numerical results and analysis
- \star Summary and tasks ahead

References:

- 1. A. Duncan, E. Eichten, H. Thacker, PRL 76, 3894 [Duncan(1996)]
- 2. T. Blum, T. Doi, M. Hayakawa, T. Izubuchi, N. Yamada, PRD 76, 114506 [Blum(2007)]
- 3. J. Bijnens, N. Danielsson, PRD 75, 014505 [Bijnens(2007)]
- C. Aubin, C. Bernard, C. DeTar, J. Osborn, S. Gottlieb, E.B. Gregory, D. Toussaint, U.M. Heller, J.E. Hetrick, R. Sugar, PRD 70, 114501 [*MILC(2004)*]

Hadron Isomultiplets

$n^0 p^+$	(udd) (uud)	939.6 MeV 938.3 MeV	π^{\pm} π^{0}	$(uar{d})\ (qar{q})$	$139.6 { m ~MeV} \\ 135.0 { m ~MeV}$
Σ^{-} Σ^{0} Σ^{+}	$(dds)\ (uds)\ (uus)$	1197.4 MeV 1192.5 MeV 1189.4 MeV	$ \begin{array}{c} K^{\pm} \\ K^{0} \end{array} $	$egin{array}{l} (uar{s})\ (dar{s}) \end{array}$	$493.7 { m MeV} \\ 497.7 { m MeV} \\$

Two sources of mass splittings

- Isospin breaking contributions due to the difference in masses of the u and d quarks
- Different electromagnetic charges between the meson and baryon isospin members

Different contributions to mass splittings

$$\begin{array}{lll} M_{\pi^{\pm}} - M_{\pi^{0}} &= & 4.594 \; \text{MeV (Expt)} \\ M_{\pi^{\pm}} - M_{\pi^{0}} |^{d-u} &\approx & 0.164(30) \; \text{MeV} \\ M_{\pi^{\pm}} - M_{\pi^{0}} |^{\text{em}} &\approx & 4.43(30) \; \text{MeV} \end{array}$$

$$\begin{array}{lll} M_{K^0} - M_{K^{\pm}} &=& 3.971(30) \; \mathrm{MeV} \; (\mathrm{Expt}) \\ M_{K^0} - M_{K^{\pm}} |^{d-u} &\approx& 3.973(30) \; \mathrm{MeV} \\ M_{K^0} - M_{K^{\pm}} |^{\mathrm{em}} &\approx& -0.044 \; \mathrm{MeV} \end{array}$$

In the chiral limit and to $\mathcal{O}(e^2)$,

Dashen's theorem : $(M_{\pi^{\pm}}^2 - M_{\pi^0}^2)_{e.m.} = (M_{K^{\pm}}^2 - M_{K^0}^2)_{e.m.}$ electromagnetic interactions modifying LO psuedoscalar masses

$$M_{\pi^{\pm}}^{2} = 2\hat{m}B_{0} + \frac{2Ce^{2}}{F_{0}^{2}}(q_{u} - q_{d})^{2}, \quad M_{K^{\pm}}^{2} = (\hat{m} + m_{s})B_{0} + \frac{2Ce^{2}}{F_{0}^{2}}(q_{u} - q_{s})^{2}$$

Corrections to Dashen's theorem

At NLO, *i.e.* $\mathcal{O}(e^2m)$, Dashen's theorem receives correction, denoted as (for $m_u = m_d = \hat{m}$),

 $\Delta M_D^2 = \Delta M_K^2 - \Delta M_\pi^2 = \left(M_{K^{\pm}}^2 - M_{K^0}^2 \right)_{\text{e.m.}} - \left(M_{\pi^{\pm}}^2 - M_{\pi^0}^2 \right)_{\text{e.m.}}$

or parametrize as in MILC(2004), Blum(2007)

 $\Delta M_K^2 = (1 + \Delta_E) \Delta M_\pi^2$

- ★ NLO correction to Dashen's theorem can be large [Donoghue et.al. PRD 47 (1993) 2089; Urech NPB 433 (1995) 234; Bijnens et.al. NPB 490 (1997) 239].
- ★ Estimation of electromagnetic contributions to M_{π} and especially $M_{K^{\pm,0}}$ has large uncertainties.
- * Determination of quark masses, particularly m_u/m_d , relies for electromagnetic contributions on continuum phenomenology which results in ~ 20% error in quark mass ratio [*MILC (2204)*].

Lattice calculation of meson splittings

Mass splittings within isomultiplets from EM $\sim m_d - m_u$

- Lattice computation of hadron spectra and pattern of isomultiplet mass splittings by including EM fields in QCD \rightarrow understanding isospin symmetry breaking
- Precision determination of quark masses (m_u, m_d, m_s) and their ratios.
- Phenomenologically relevant quantities like ΔM^2 can be determined from pQQCD where the photons are only coupled to the valence quarks.
- $pQ\chi PT$ for $N_f = 2+1$ at NLO has been worked out by *Bijnens* et.al (2007) \longrightarrow to be used for extrapolation to chiral limit, requires determination of EM *LEC*s.

Pure electromagnetic correction from lattice

Pure electromagnetic correction (relevant for determining corrections to Dashen's theorem) is computed from [*Bijnens et.al (2007)*],

$$\Delta M^{2} = M^{2}(\chi_{1}, \chi_{3}, q_{1}, q_{3}) - M^{2}(\chi_{1}, \chi_{3}, q_{3}, q_{3})$$
$$-M^{2}(\chi_{1}, \chi_{1}, q_{1}, q_{3}) + M^{2}(\chi_{1}, \chi_{1}, q_{3}, q_{3})$$

where $\chi_i \equiv 2B_0 m_i$ and $M^2(\chi_1, \chi_3, q_1, q_3)$ denotes mass of the meson with valence quark masses $\chi_1 = \chi_2$, χ_3 and valence charges q_1 , q_3 . Lattice data ΔM^2 is fitted to

$$\Delta M^2 = \mathcal{A}_1(\chi_{13} - \chi_{11}) + \mathcal{A}_2\left[\chi_{13}\log\left(\frac{\chi_{13}}{\mu^2}\right) - \chi_{11}\log\left(\frac{\chi_{11}}{\mu^2}\right)\right] \\ + \mathcal{A}_3\left[\chi_{1s}\log\left(\frac{\chi_{1s}}{\mu^2}\right) - \chi_{3s}\log\left(\frac{\chi_{3s}}{\mu^2}\right)\right] \\ + \mathcal{A}_4\left[\chi_{13}\left\{1 - \frac{1}{2}\log\left(\frac{\chi_{13}}{\mu^2}\right)\right\} - \chi_{11}\left\{1 - \frac{1}{2}\log\left(\frac{\chi_{11}}{\mu^2}\right)\right\}\right]$$

$SU(3)_{color} \times U(1)_{em}$ fields on lattice

- ★ Gluon configurations generated with $N_f = 2 + 1$ dynamical Asqtad staggered quarks (by MILC).
- * Quenched photon configurations generated with non-compact U(1) action [Duncan et.al. (1996), Blum et.al. (2007)],

$$S_{\rm em} = \frac{1}{4e^2} \sum_{n,\mu,\nu}^{\prime} \left(\partial_{\mu}^{\rm R} A_{\nu}(n) - \partial_{\nu}^{\rm R} A_{\mu}(n) \right)^2, \quad \nabla \cdot \vec{A} = 0$$

subjected to Coulomb gauge fixing.

- ★ Photon fields are obtained in momentum space from Gaussian random numbers and coordinate space Coulomb gauge fields $\{A_{\mu}(n)\}$ are recovered by FFT $\Rightarrow U_{\mu}^{\text{em}}(n) = e^{iqeA_{\mu}(n)}$.
- * Charged quark propagators are computed for $U^{\text{qcd}}_{\mu}(n) \times U^{\text{em}}_{\mu}(n)$.

First attempt with staggered quarks

Partially quenched $N_f = 2 + 1$ calculations

lattice	eta	a (fm)	m_l/m_s	cfgs
$20^3 \times 48$	6.566	0.15	0.00484/0.0484	200
$16^3 \times 48$	6.572	0.15	0.0097/0.0484	400
$16^3 \times 48$	6.586	0.15	0.0194/0.0484	400
$16^3 \times 48$	6.600	0.15	0.0290/0.0484	400

- A sqtad improved staggered valence quark propagators for $m_q^{\rm v}=0.0048,\,0.0097,\,0.0145,\,0.0194,\,0.0242,\,0.0291,\,0.0388,\,0.0484$
- Wall sources for charged quark propagators. Fits reported here are all correlated χ^2 fits and jackknife errors.
- Masses are extracted from exponential fall-off of meson propagators in the time range 9–24, taking into account the correlations among time slices.

First attempt with staggered quarks

Estimate of $\mathcal{O}(e^2)$ and $\mathcal{O}(e^2m)$ contribution to pseudoscalar masses

$$m_{\pi}^2(e \neq 0) - m_{\pi}^2(e = 0) = \mathcal{A}_0(q_u - q_d)^2 + \mathcal{O}(e^2m)$$

EM splittings ...

11/16

EM splittings ...

13/16

EM splittings ...

14/16

Dashen correction: preliminary result

 $7.0 \times 10^{-4} < \Delta M_D^2 \; (\text{GeV}^2) < 1.8 \times 10^{-3} \; (1.07 \times 10^{-3})$

Summary and tasks ahead

- ★ Inclusion of electromagnetic corrections in Lattice QCD is important to understand isospin symmetry breaking and precision calculation of quark masses and their ratios.
- * As a simple first step, EM fields included in QCD are in quenched approximation and NLO $pQ\chi PT$ 2+1 flavor for such QED + QCD is available for use with lattice results.
- ★ We have analyzed four MILC $N_f = 2+1$, $a \approx 0.15$ fm ensembles and initial results show good meson splittings, which will soon be analyzed with NLO pQ χ PT.
- ★ Preliminary estimation of Dashen correction has been carried out and found to be in the correct range as predicted from continuum.
- ★ Extension of the present study in larger volume and smaller lattice spacing (a = 0.12 fm, 0.09 fm) is under way.