Pion vector and scalar form factors with dynamical overlap quarks

T. Kaneko for JLQCD + TWQCD collaborations

<sup>1</sup>High Energy Accelerator Research Organization (KEK)

<sup>2</sup>Graduate University for Advanced Studies

Lattice 2008, Jul 17, 2008

医牙周 医子宫 医子宫

Sar

#### 1. introduction

pion vector form factor  $F_V(q^2)$ 

- expr't + ChPT  $\Rightarrow \langle r^2 \rangle_V, l_6$
- LQCD  $\Rightarrow$  deep understanding of  $q^2$  dependence / chiral behavior  $\Rightarrow$  K, D, B decays

pion scalar form factor  $F_S(q^2)$ 

- $\langle r^2 \rangle_S \Rightarrow l_4 \iff l_4 \text{ from } F_\pi$
- $\langle r^2 \rangle_S$ : enhanced chiral log  $-6/(4\pi F)^2 \ln[M_\pi^2/\mu^2]$

 $\Leftrightarrow \langle r^2 \rangle_V : -1/(4\pi F)^2 \ln[M_\pi^2/\mu^2]$ 

• direct determination in LQCD  $\leftarrow$  needs disconnected 3-pt. functions

### 1. introduction

#### this work

calculate pion form factors in  $N_f = 2$  QCD

- overlap quarks + small  $m_{ud} \Rightarrow$  straightforward comparison w/ ChPT
- all-to-all quark propagators
  - ⇒ precise determination of connected / disconnected 3-pt. functions

#### outline

- simulation method
- determination of  $F_V(q^2)$  and  $F_S(q^2)$
- parametrization of  $q^2$  dependence
- chiral extrapolation of  $\langle r^2 \rangle_V$ ,  $\langle r^2 \rangle_S$ , ...

simulation method

configuration generation measurement

# 2.1 simulation method: configuration generation

#### production run

- $N_f = 2$  QCD w/ degenerate u and d quarks
- Iwasaki gauge + overlap quarks w/ std. Wilson kernel
- determinant to suppress zero modes:  $det[H_W^2]/det[H_W^2 + \mu^2]$  ( $\mu = 0.2$ )
- $\beta = 2.30$ :  $a = 0.1184(3)(21) \text{ fm} \leftarrow r_0 = 0.49 \text{ fm}$
- $16^3 \times 32$ : L ~ 1.9 fm

#### for pion form factors

- 4  $m_{ud}$ :  $m_{ud} \simeq m_{s, {\rm phys}}/6 m_{s, {\rm phys}}/2$ ,  $M_{\pi} \simeq 290 520 \ {\rm MeV}$
- 100 conf × 100 HMC traj. = 10,000 traj.
- in Q = 0 sector need to study effects of fixed topology (Aoki et al., 2007)
- local and smeared operators :  $\phi_{l}(|\mathbf{r}|) = \delta_{\mathbf{r},\mathbf{0}}, \phi_{s}(|\mathbf{r}|) = \exp[-0.4|\mathbf{r}|]$
- $|\mathbf{p}| \leq \sqrt{3}$  (in units of  $2\pi/L$ )  $\Rightarrow$   $|q^2| \lesssim 1.7 ~ \mathrm{GeV}^2$

overview of our dynamical overlap project  $\Rightarrow$  plenary talk by S.Hashimoto = 333

simulation method

configuration generation measurement

#### 2.2 simulation method: measurements

all-to-all quark propagators (TrinLat, 2005)

- low-mode projection :  $D \, u^{(k)} = \lambda^{(k)} u^{(k)}$  ( $k \le N_{\rm ep} =$  100)
- ${\ }$   $\circ$  noise method :  $D\,x^{(r,d)}=\eta^{(r,d)}$  (r  $\leq$   $N_r$  =1) w/ dilution for color/spinor/t

$$D^{-1} = \sum_{k=1}^{N_{ep}} \frac{u^{(k)}}{\lambda^{(k)}} u^{(k)\dagger} + (1 - P_{low}) \sum_{r=1}^{N_r} \sum_{d=1}^{N_d} \frac{x^{(r,d)}}{N_r} \eta^{(r,d)\dagger} = \sum_{k=1}^{N_{vec}=N_{ep}+N_rN_d} v^{(k)} w^{(k)\dagger}$$
$$v^{(k)} = \{u^{(1)}/\lambda^{(1)}, \dots, x^{(1,1)}/N_r, \dots\}, \quad w^{(k)} = \{u^{(1)}, \dots, \eta^{(1,1)}, \dots\}$$

#### connected 3-pt. functions



γconn πΓπ

- $\Delta t$ : temporal separation src  $\Leftrightarrow$  opr  $\Delta t'$ : temporal separation opr  $\Leftrightarrow$  snk
- $\mathbf{p}$ : initial meson momentum
- $\mathbf{p}'$ : final meson momentum

$$\mathcal{M}_{\Gamma,\phi}^{(k,l)}(t;\mathbf{p}) = \sum_{\mathbf{x},\mathbf{r}} \phi(\mathbf{r}) \, w(\mathbf{x}+\mathbf{r},t)^{(k)\dagger} \, \Gamma \, v^{(l)}(\mathbf{x},t) \, \exp[-i\mathbf{p}\mathbf{x}]$$

$$_{,\phi\phi'}(\Delta t, \Delta t';\mathbf{p},\mathbf{p}') = \frac{1}{N_t} \sum_{t=1}^{N_t} \sum_{k=1}^{N_{vec}} \sum_{l=1}^{N_{vec}} \sum_{m=1}^{N_{vec}} \mathcal{M}_{\pi,\phi'}^{(m,l)}(t+\Delta t+\Delta t';\mathbf{p}') \times \mathcal{M}_{\pi,\phi}^{(l,k)}(t+\Delta t;\mathbf{p},-\mathbf{p}') \mathcal{M}_{\pi,\phi}^{(k,m)}(t;-\mathbf{p}), \mathbb{C}$$

simulation method

configuration generation measurement

#### 2.2 simulation method: measurements







$$C_{\pi S \pi, \phi \phi'}^{\text{disc}}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}') = \frac{1}{N_t} \sum_{t=1}^{N_t} \sum_{k=1}^{N_{\text{vec}}} \sum_{l=1}^{N_{\text{vec}}} \mathcal{M}_{\pi, \phi'}^{(k,l)}(t + \Delta t + \Delta t'; \mathbf{p}') \mathcal{M}_{\pi, \phi}^{(l,k)}(t; -\mathbf{p}) \times \sum_{m=1}^{N_{\text{vec}}} \mathcal{M}_{S, \phi_l}^{(m,m)}(t + \Delta t; \mathbf{p} - \mathbf{p}')$$

$$C_{\pi S \pi, \phi \phi'}^{\mathsf{VEV}}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}') = \frac{1}{N_t} \sum_{t=1}^{N_t} \sum_{k=1}^{N_{vec}} \sum_{l=1}^{N_{vec}} \mathcal{M}_{\pi, \phi'}^{(k,l)}(t + \Delta t + \Delta t'; \mathbf{p}') \mathcal{M}_{\pi, \phi}^{(l,k)}(t; -\mathbf{p}) \\ \times \left\langle \frac{1}{N_t} \sum_{t=1}^{N_t} \sum_{m=1}^{N_{vec}} \mathcal{M}_{S, \phi_l}^{(m,m)}(t + \Delta t; \mathbf{p} - \mathbf{p}') \right\rangle_{\mathsf{conf}}$$

$$C^{\rm sngl}_{\pi S\pi,\phi\phi'} \quad = \quad C^{\rm conn}_{\pi S\pi,\phi\phi'} - C^{\rm disc}_{\pi S\pi,\phi\phi'} + C^{\rm VEV}_{\pi S\pi,\phi\phi'}$$

<ロト < 回ト < 回ト < ヨト < ヨト -

= 990

vector form factor scalar form factor

## 3.1 determination of form factors : $F_V(q^2)$

ratio method (S. Hashimoto, et al., 2000)

$$C^{\text{conn}}_{\pi V_{4}\pi,\phi_{5}\phi_{5}}(\Delta t,\Delta t';\mathbf{p},\mathbf{p}') \quad \rightarrow \quad \frac{\sqrt{Z_{\pi,\phi}(|\mathbf{p}|) Z_{\pi,\phi}(|\mathbf{p}'|)}}{4E(p)E(p') Z_{V}} e^{-E(p)\Delta t} e^{-E(p')\Delta t'} \langle \pi(p') | V_{4} | \pi(p) \rangle$$

$$C_{\pi\pi,\phi\phi'}(\Delta t; \mathbf{p}) \to \frac{\sqrt{Z_{\pi,\phi}(|\mathbf{p}|) Z_{\pi,\phi'}(|\mathbf{p}'|)}}{2E(p)} e^{-E(p)\Delta t}, \qquad \sqrt{Z_{\pi,\phi}(|\mathbf{p}|)} = \langle \pi(p) | O_{\pi,\phi}(\mathbf{p})^{\dagger} \rangle$$

$$R_4(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}') = \frac{C_{\pi V_4 \pi, \phi_5 \phi_5}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{C_{\pi \pi, \phi_5 \phi_1}(\Delta t; \mathbf{p}) C_{\pi \pi, \phi_1 \phi_5}(\Delta t'; \mathbf{p}')} = \frac{\langle \pi(p') | V_4 | \pi(p) \rangle}{\sqrt{Z_{\pi, \text{lcl}} Z_{\pi, \text{lcl}}}}$$

$$F_V(\Delta t, \Delta t'; q^2) = \frac{2M_\pi}{E(p) + E(p')} \frac{R_4(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{R_4(\Delta t, \Delta t'; \mathbf{0}, \mathbf{0})}$$



vector form factor scalar form factor

3.1 determination of form factors :  $F_V(q^2)$ 

effective value  $F_V(\Delta t, \Delta t'; q^2)$  at m = 0.050



• conventional :  $\Delta t + \Delta t'$  fixed

- all-to-all : can take any combination of  $(\Delta t, \Delta t')$
- $\bullet\,$  accurate when  $|\mathbf{p}|,\,|\mathbf{p}'|$  are not large

•  $F_V(q^2) \leftarrow \text{constant fit + leading finite V correction}$  (Borasoy-Lewis, 2005)

∆t, p

・ロト ・ 同ト ・ ヨト ・ ヨト

∆t', p

vector form factor scalar form factor

# 3.2 determination of form factors : $F_S(q^2)$

#### ratio method

$$\langle \pi(p') | S | \pi(p) \rangle = F_S(q^2)$$

$$R_{S}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}') = \frac{C_{\pi S \pi, \phi_{5} \phi_{5}}^{\mathsf{sngl}}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{C_{\pi \pi, \phi_{5} \phi_{1}}(\Delta t; \mathbf{p}) C_{\pi \pi, \phi_{1} \phi_{5}}(\Delta t'; \mathbf{p}')} = \frac{\langle \pi(p') | S | \pi(p) \rangle}{\sqrt{Z_{\pi, \mathsf{lcl}} Z_{\pi, \mathsf{lcl}}}}$$

$$\frac{F_S(\Delta t, \Delta t'; q^2)}{F_S(\Delta t, \Delta t'; 0)} = \frac{R_S(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{R_S(\Delta t, \Delta t'; 0, 0)}$$
(no kinematical factor)

$$F_{S}(\Delta t, \Delta t'; \mathbf{0}) \quad \Leftarrow \quad C_{\pi S \pi}^{\mathsf{sngl}}(\mathbf{q} = \mathbf{0}) = C_{\pi S \pi}^{\mathsf{conn}}(\mathbf{q} = \mathbf{0}) - \left(C_{\pi S \pi}^{\mathsf{disc}}(\mathbf{q} = \mathbf{0}) - C_{\pi S \pi}^{\mathsf{vev}}(\mathbf{q} = \mathbf{0})\right)$$

$$\frac{F_{S}(\Delta t, \Delta t'; q^{2})}{F_{S}(\Delta t, \Delta t'; q_{\text{ref}})} = \frac{R_{S}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{R_{S}(\Delta t, \Delta t'; \mathbf{1}, \mathbf{0})} \quad \text{(normalized @} |\mathbf{p}| = 1, |\mathbf{p}'| = 0\text{)}$$



T. Kaneko

Pion vector and scalar form factors with dynamical overlap quarks

vector form factor scalar form factor

### 3.2 determination of form factors : $F_S(q^2)$







• large error @  $q^2 = 0 \iff$  subtraction  $C_{\pi S \pi}^{\text{disc}} - C_{\pi S \pi}^{\text{VEV}}$ 

- constant fit  $\Rightarrow F_S(q^2)/F_S(q_{ref}^2)$
- disconnected diagram  $\Rightarrow$  small correction to  $F_S(q^2)/F_S(q_{ref}^2)$

・ロト ・四ト ・ヨト・

Sac

 $q^2$  dependence

vector form factor scalar form factor

4.1  $q^2$  dependence :  $F_V(q^2)$ 



• close to VMD near  $q^2 = 0 \Rightarrow$  include  $\rho$  meson pole w/ measured mass

$$F_V(q^2) = rac{1}{1-q^2/M_
ho^2} + c_1\,q^2 + c_2\,(q^2)^2 + c_3\,(q^2)^3 = 1 + rac{\langle r^2 
angle_V}{6}\,q^2 + c_V\,(q^2)^2 + ...$$

• w/ quad. / cubic correction  $\Rightarrow$  reasonable  $\chi^2/dof \sim 1$ 

• simple polynomial, single pole forms 1/(1 -  $q^2/M_{pole}^2)$   $\Rightarrow \chi^2/dof \sim 2-5$ 

イロト イポト イヨト イヨト

Sac

 $q^2$  dependence

vector form factor scalar form factor

4.2  $q^2$  dependence :  $F_S(q^2)$ 



with our statistical accuracy ...

o can be fitted to the quadratic form

$$F_S(q^2) = 1 + \frac{\langle r^2 \rangle_S}{6} q^2 + c_S (q^2)^2$$

- cubic, single pole forms  $\Rightarrow$  consistent  $\langle r^2 \rangle_S$  w/ larger error
- $c_S$  : ill-determined (strongly depends on the parametrization form)

w/ NLO ChPT formulae w/ NNLO ChPT formulae

#### 5.1 chiral extrapolation : w/ NLO ChPT formulae

# $\begin{array}{rcl} & \underline{\operatorname{vector\ charge\ radius\ }\langle r^2\rangle_V} & \underline{\operatorname{scalar\ charge\ radius\ }\langle r^2\rangle_S} \\ & \overline{\langle r^2\rangle_V} & = & -(1/NF^2)(1+Nl_6^r) \\ & & -(1/NF^2)\ln[M_\pi^2/\mu^2] \end{array} & \overline{\langle r^2\rangle_S} & = & (1/NF^2)(-13/2+6Nl_4^r) \\ & & -(6/NF^2)\ln[M_\pi^2/\mu^2] \end{array}$

 $(N = (4\pi)^2;$  use F = 78.8 MeV from  $M_{\pi}$ ,  $F_{\pi}$  (JLQCD+TWQCD,2008); set  $\mu = 4\pi F$ )



- acceptable  $\chi^2/dof \sim 0.3$
- $\langle r^2 \rangle_V = 0.362(4) \text{ fm}^2 \text{ at } m_{ud, \text{phys}}$ 
  - $\Leftrightarrow$  expr't+ChPT : 0.437(16) fm<sup>2</sup>

(Bijnens et al., 1998)



• unacceptable  $\chi^2/{
m dof}\,{\sim}\,17$ 

• 
$$\langle r^2 \rangle_S = 0.712(8) \text{ fm}^2 \text{ at } m_{ud, \text{phys}}$$
  
 $\Leftrightarrow \text{ ChPT} : \langle r^2 \rangle_S = 0.61(4) \text{ fm}^2$   
(Colangelo et al., 2001),  $\langle z \rangle_S = 0.61(4) \text{ fm}^2$ 

w/ NLO ChPT formulae w/ NNLO ChPT formulae

#### 5.1 chiral extrapolation : w/ NLO ChPT formulae

#### vector charge radius $\langle r^2 \rangle_V$ scalar charge radius $\langle r^2 \rangle_S$ $\langle r^2 \rangle_V = -(1/NF^2)(1+Nl_6^r)$ $\langle r^2 \rangle_S = (1/NF^2)(-13/2 + 6Nl_4^r)$ $-(1/NF^2)\ln[M_-^2/\mu^2]$ $-(6/NF^2)\ln[M_{-}^2/\mu^2]$ $(N = (4\pi)^2)$ ; use F = 78.8 MeV from $M_{\pi}$ , $F_{\pi}$ (JLQCD+TWQCD,2008); set $\mu = 4\pi F$ ) $\rho$ pole + cubic quad expr't + ChPT expr't + ChPT 0.6 [2] 0.4 5/2 × ([m] ETMC (lat07) 0.2 0.2∟ 0.0 0.0 04 0.5 0.3 $M_{-}^{2}$ [GeV<sup>2</sup>] $M_{2}^{2}$ [GeV<sup>2</sup>]

comparison w/ ETMC's result (twisted mass, a = 0.09 fm, L = 2.2 fm, @lat07)
 ⇒ not due to finite V corrections, effects of fixed Q, finite a, ...
 F<sub>V</sub>(q<sup>2</sup>) ~ VMD : resonance exchange ⇒ m<sub>q</sub> dep @ NNLO

w/ NLO ChPT formulae w/ NNLO ChPT formulae

#### 5.2 chiral extrapolation : w/ NNLO ChPT formulae

NNLO formulae (Bijnens-Colangelo-Talavera, 1998)

$$\begin{split} \langle r^{2} \rangle_{V} &= -\frac{1}{NF^{2}} \left( 1 + 6Nl_{6}^{r} \right) - \frac{1}{NF^{2}} \ln \left[ \frac{M_{\pi}^{2}}{\mu^{2}} \right] \\ &+ \frac{1}{N^{2}F^{4}} \left( \frac{13N}{192} - \frac{181}{48} + 6N^{2}r_{V,1} \right) M_{\pi}^{2} + \frac{1}{N^{2}F^{4}} \left( \frac{19}{6} - 6Nl_{1,2}^{r} \right) M_{\pi}^{2} \ln \left[ \frac{M_{\pi}^{2}}{\mu^{2}} \right] \\ \langle r^{2} \rangle_{S} &= \frac{1}{NF^{2}} \left( -\frac{13}{2} + 6Nl_{4}^{r} \right) - \frac{6}{NF^{2}} \ln \left[ \frac{M_{\pi}^{2}}{\mu^{2}} \right] \\ &+ \frac{1}{N^{2}F^{4}} \left( -\frac{23N}{192} + \frac{869}{108} + 88Nl_{1,2}^{r} + 80Nl_{2}^{r} + 5Nl_{3} - 24N^{2}l_{3}^{r}l_{4}^{r} + 6N^{2}r_{S,1} \right) M_{\pi}^{2} \\ &+ \frac{1}{N^{2}F^{4}} \left( -\frac{323}{36} - 124Nl_{1,2}^{r} + 130Nl_{2}^{r} \right) M_{\pi}^{2} \ln \left[ \frac{M_{\pi}^{2}}{\mu^{2}} \right] - \frac{65}{3N^{2}F^{4}} M_{\pi}^{2} \ln \left[ \frac{M_{\pi}^{2}}{\mu^{2}} \right]^{2} \\ c_{V} &= \frac{1}{60NF^{2}} \frac{1}{M_{\pi}^{2}} + \frac{1}{N^{2}F^{4}} \left( \frac{N}{720} - \frac{8429}{25920} + \frac{N}{3}l_{1,2}^{r} + \frac{N}{6}l_{6}^{r} + N^{2}r_{V,2} \right) \\ &+ \frac{1}{N^{2}F^{4}} \left( \frac{1}{108} + \frac{N}{3}l_{1,2}^{r} + \frac{N}{6}l_{6}^{r} \right) \ln \left[ \frac{M_{\pi}^{2}}{\mu^{2}} \right] + \frac{1}{72N^{2}F^{4}} \ln \left[ \frac{M_{\pi}^{2}}{\mu^{2}} \right]^{2} \\ c_{S} &= \dots \\ l_{1,2}^{r} &= l_{1}^{r} - l_{2}^{r}/2 \end{split}$$

T. Kaneko

#### 5.2 chiral extrapolation : w/ NNLO ChPT formulae

#### Is NNLO necessary?

 $\langle r^2 \rangle_{V,S}$  from NNLO formulae w/ phenomenological estimates of LECs

- $F = F_{\pi}/1.069$  from *Bijnens et al.*, 1998
- NLO LECs  $l_i^r$  from Bijnens et al., 1998, or Colangelo et al., 2001

$$ar{l}_6=16.0, \quad ar{l}_4=4.4, \quad ar{l}_1=-0.36, \quad ar{l}_2=4.31, \quad ar{l}_3=2.9$$

• NNLO LECs  $r_{X,i}$  from *Bijnens et al., 1998* ( $\leftarrow$  resonance saturation)

$$r_{V,1} = 2.5 \times 10^{-4}, \quad r_{V,2} = 2.6 \times 10^{-4}, \quad r_{S,1} = -3.0 \times 10^{-5}$$



NNLO contribution may modify  $M_{\pi}^2$  dependence significantly

w/ NLO ChPT formulae w/ NNLO ChPT formulae

#### 5.2 chiral extrapolation : w/ NNLO ChPT formulae

simultaneous fit to  $\langle r^2 
angle_V$  and  $c_V$ 

 $\langle r^2 \rangle_V, c_V$ : 8 data with  $l_6^r, l_{1,2}^r, r_{V,1}, r_{V,2}$   $(l_{1,2}^r = l_1^r - l_2^r/2)$ 



• dof = 4,  $\chi^2/dof = 1.2$ 

consistent with expr't (with larger errors than NLO...)

$$\langle r^2 \rangle_V = 0.404(27) \text{ fm}^2, \ c_V = 3.10(21) \text{GeV}^{-4}$$
  
 $\Leftrightarrow \ \langle r^2 \rangle_V = 0.437(16) \text{ fm}^2, \ c_V = 3.85(60) \text{ GeV}^{-4}$ 

#### 5.2 chiral extrapolation : w/ NNLO ChPT formulae

#### simultaneous fit to $\langle r^2 \rangle_V$ , $\langle r^2 \rangle_S$ and $c_V$

• 
$$\langle r^2 \rangle_S \ni l_4^r, l_1^r, l_2^r, l_3^r, r_{S,1}$$

• fix  $\overline{l}_2 = +4.31$  (Colangelo et al., 2001),  $\overline{l}_3 = +3.44$  (JLQCD+TWQCD's analysis of  $M_{\pi}, F_{\pi}$ )

• fit parameters :  $l_6^r$ ,  $l_4^r$ ,  $l_{1,2}^r$ ,  $r_{V,1}$ ,  $r_{V,2}$ ,  $r_{S,1}$ 



T. Kaneko

• dof = 6,  $\chi^2/dof = 1.3$ 

reasonable agreement w/ expriment

イロト イポト イヨト イヨト

Sac

#### 5.2 chiral extrapolation : w/ NNLO ChPT formulae

#### varying fitting method / input



 $\langle r^2 \rangle_V = 0.404(22)(22) \text{ fm}^2, \ \langle r^2 \rangle_S = 0.578(69)(46) \text{ fm}^2, \ c_V = 3.11(14)(86) \text{ GeV}^{-4}$ 

$$\begin{split} \bar{l}_6 &= 11.8(0.7)(1.3) \iff \bar{l}_6 = 16.0(0.9) \text{ (Bijnens et al., 1998)} \\ \bar{l}_4 &= 4.06(44)(99) \iff \bar{l}_4 = 4.14(64) \text{ (JLQCD+TWQCD, 2008), } 4.39(22) \text{ (Colangelo et al., 2001)} \\ l_1^r - l_2^r/2 &= -2.9(0.8)(2.4) \times 10^3 \iff l_1^r - l_2^r/2 = -4.9(0.6) \times 10^3 \text{ (Colangelo et al., 2001)} \\ r_{V,1} &\simeq -1.1 \times 10^{-5}, \ r_{V,2} \simeq 4.0 \times 10^{-5}, \ r_{S,1} \simeq 1.3 \times 10^{-4} \text{ with } 50 = 100\% \text{ error} \quad \text{and } 100\% \text{ error} \quad \text{and } 10\% \text{ error} \quad \text{an$$

#### 6. summary

pion form factors in  $N_f = 2$  QCD with overlap quarks

- w/ all-to-all propagators
  - $F_V(q^2)$  : accurate data for connected correlators  $\Delta F_V(q^2) \approx$  2 %,
  - $F_S(q^2)$  : disconnected diagrams are taken into account  $\Delta F_S(q^2) \approx$  6 %
- q<sup>2</sup> dependence
  - $F_V(q^2)$ :  $\rho$  pole + small correction
  - $F_S(q^2)$  : pole contributions are not clear with our accuracy ...
- chiral fit
  - $\circ$  NLO ChPT fails to reproduce  $\langle r^2 
    angle_S$  at  $\gtrsim m_{s,{
    m phys}}/6 \; \Rightarrow \;$  use NNLO ChPT
  - $\langle r^2 \rangle_V = 0.404(22)(22) \text{ fm}^2$ ,  $\langle r^2 \rangle_S = 0.578(69)(46) \text{ fm}^2$
- need further studies of systematics
  - FSE on  $F_S(q^2)$ , effects due to fixed Q
- future directions
  - extension to  $N_f = 3$
  - $K \to \pi$  decays