Gapless Dirac spectrum at high temperature

Tamás G. Kovács University of Pécs

Background

- Just above T_c ⟨ψψ⟩ ≠ 0 if P-loop is complex (Chandrasekharan and Christ, hep-lat/9509095)
 ⇒ Chiral symmetry is restored at T_c only if P-loop real
- Random matrix model \Rightarrow Chiral symmetry restoration occurs
 - at higher T if P-loop complex for SU(3)
 - never if P-loop<0 for SU(2)

(Stephanov, PLB375 (1996) 249)

- Lattice:
 - SU(3): in all P-loop sectors spectral gap appears at the same $T = T_c$ (Gattringer et al. PRD66 (2002) 054502)
 - SU(2): $ho(0) \neq 0$ up to $T = 2T_c$ (Bornyakov et al. arXiv:0807.1980)

Qualitative picture

- In quenched SU(N) YM Polyakov-loop Z(N) symmetry spontaneously broken above T_c (deconfined phase).
- Chiral symmetry restoration above *T_c* depends strongly on the Polyakov-loop sector
- Banks-Casher:

$$\langle \bar{\psi}\psi
angle = \pi
ho(0)$$

chiral symmetry breaking \Leftrightarrow Dirac operator spectral density at 0

- Experience:
 - $(-1) \times P$ closer to 1 \Rightarrow more low Dirac modes
 - $(-1) \times P$ effective boundary condition for quarks

SU(2) further questions

- Does $\rho(0) \neq 0$ persist at arbitrarily high *T* in the P-loop<0 sector?
- Comparison of Dirac spectrum with random matrix theory (around and above T_c)
- Instantons $\Leftrightarrow \rho(0) \neq 0$?
- How do dynamical fermions select the correct P-loop sector?

SU(2) simulation parameters

- All runs at quenched $\beta = 2.6$ (β_c for N_T =10.4)
- Vary N_T to change temperature

•
$$T = 2.6T_c \ (N_T = 4), \qquad T = 1.7T_c \ (N_T = 6)$$

- Spatial sizes: $N_S = 8, 10, 12, 16, 20$: $N_{T_c}/N_S = 0.52 1.30$
- Overlap Dirac operator
- Antiperiodic quark boundary condition in time

Density of low modes for different Polyakov loop sectors

Density of low modes for different Polyakov loop sectors

7

Density of modes at zero

Cumulative distribution of scaled smallest eigenvalues for Q=0

 $T = 2.6T_c$ $\Sigma = \langle \bar{\psi}\psi \rangle$: best one-parameter fit to random matrix prediction

Possible role of instantons?

- Common wisdom: instanton-antiinstanton 0-modes $\Rightarrow \rho(0) \neq 0$
- As temperature goes up:
 - Topological susceptibility drops (instantons "squeezed out")
 - $ho(0) pprox \langle \bar{\psi}\psi
 angle$ increases

• \Rightarrow At high *T* instantons cannot be responsible for $\rho(0) \neq 0$

Why is $\langle \bar{\psi}\psi \rangle = 0$ above T_c in the real world?

- Fermion determinant breaks P-loop Z(N) symmetry
- Favors sector with the least number of low modes
- Effective boundary condition as far from periodic as possible
 - P-loop real for SU(3)
 - P-loop<0 for SU(2)

• Is it really only the low modes that matter?

Difference in fermion action between P-loop sectors one quark flavor of mass *m*

Conclusions

- In quenched SU(2) above *T_c* chiral condensate has strong dependence on the P-loop average
 - If $\langle P \rangle > 0$ condensate vanishes at T_c
 - If $\langle P \rangle < 0$ condensate increases with T
- In the $\langle P \rangle < 0$ sector with chiral symmetry broken above T_c
 - Good agreement with random matrix theory
 - Topological charge fluctuations cannot account for low Dirac modes
- In the real world:
 - Fermion determinant suppresses "wrong" P-loop sector
 - Small fraction of lowest Dirac modes (<1%) responsible for that
- Picture should be qualitatively similar for other Dirac operators and SU(3)