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Background

• Just above Tc 〈ψ̄ψ〉 6= 0 if P-loop is complex
(Chandrasekharan and Christ, hep-lat/9509095)

⇒ Chiral symmetry is restored at Tc only if P-loop real

• Random matrix model ⇒ Chiral symmetry restoration occurs

– at higher T if P-loop complex for SU(3)

– never if P-loop<0 for SU(2) (Stephanov, PLB375 (1996) 249)

• Lattice:

– SU(3): in all P-loop sectors spectral gap appears
at the same T = Tc (Gattringer et al. PRD66 (2002) 054502)

– SU(2): ρ(0) 6= 0 up to T = 2Tc (Bornyakov et al. arXiv:0807.1980)
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Qualitative picture

• In quenched SU(N) YM Polyakov-loop Z(N) symmetry spontaneously
broken above Tc (deconfined phase).

• Chiral symmetry restoration above Tc depends strongly on the
Polyakov-loop sector

• Banks-Casher:

〈ψ̄ψ〉 = πρ(0)

chiral symmetry breaking ⇔ Dirac operator spectral density at 0

• Experience:

– (−1)×P closer to 1 ⇒ more low Dirac modes

– (−1)×P effective boundary condition for quarks
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SU(2) further questions

• Does ρ(0) 6= 0 persist at arbitrarily high T in the P-loop<0 sector?

• Comparison of Dirac spectrum with random matrix theory
(around and above Tc)

• Instantons ⇔ ρ(0) 6= 0 ?

• How do dynamical fermions select the correct P-loop sector?
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SU(2) simulation parameters

• All runs at quenched β = 2.6 (βc for NT =10.4)

• Vary NT to change temperature

• T = 2.6Tc (NT = 4), T = 1.7Tc (NT = 6)

• Spatial sizes: NS = 8,10,12,16,20: NTc/NS = 0.52−1.30

• Overlap Dirac operator

• Antiperiodic quark boundary condition in time
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Density of low modes for different Polyakov loop sectors
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Density of low modes for different Polyakov loop sectors
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Density of modes at zero
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Cumulative distribution of scaled smallest eigenvalues fo r Q=0

T = 2.6Tc Σ = 〈ψ̄ψ〉: best one-parameter fit to random matrix prediction
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Possible role of instantons?

• Common wisdom: instanton-antiinstanton 0-modes ⇒ ρ(0) 6= 0

• As temperature goes up:

– Topological susceptibility drops (instantons “squeezed out”)

– ρ(0) ≈ 〈ψ̄ψ〉 increases

• ⇒ At high T instantons cannot be responsible for ρ(0) 6= 0
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Why is 〈ψ̄ψ〉 = 0 above Tc in the real world?

• Fermion determinant breaks P-loop Z(N) symmetry

• Favors sector with the least number of low modes

• Effective boundary condition as far from periodic as possible

– P-loop real for SU(3)

– P-loop<0 for SU(2)

• Is it really only the low modes that matter?
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Difference in fermion action between P-loop sectors
one quark flavor of mass m
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Conclusions

• In quenched SU(2) above Tc chiral condensate has strong
dependence on the P-loop average

– If 〈P〉 > 0 condensate vanishes at Tc
– If 〈P〉 < 0 condensate increases with T

• In the 〈P〉 < 0 sector with chiral symmetry broken above Tc

– Good agreement with random matrix theory
– Topological charge fluctuations cannot account for low Dirac modes

• In the real world:

– Fermion determinant suppresses “wrong” P-loop sector
– Small fraction of lowest Dirac modes (< 1%) responsible for that

• Picture should be qualitatively similar for other Dirac operators
and SU(3)
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