The light baryon spectrum calculated with $2+1$ flavors of domain wall fermions

Tom Blum

(University of Connecticut and The RIKEN BNL Research Center)
RBC and UKQCD Collaborations

Lattice 2008, July 14, 2008

Outline of the talk

- Simulation summary
- Fitting procedure
- Sources and effective masses
- Preliminary results
- Some analysis
- Summary/Outlook

Simulation summary
$2+1$ flavors of domain wall fermions, Iwasaki gluons

β	m_{l}	size	Generator
2.13	$0.005,0.01,0.02,0.03$	$16^{3} \times 32,24^{3} \times 64\left(L_{s}=16\right)$	RBC, UKQCD
2.25	$0.004,0.006,0.008$	$32^{3} \times 64\left(L_{s}=16\right)$	LHPC, RBC, UKQCl

2.13: $a^{-1}=1.729(28), L \approx 2.74 \mathrm{fm}, m_{l} / m_{s} \approx 0.217 \rightarrow 0.884$ $m_{s}=0.04, m_{\text {res }}=0.00315$
[arXive:0804.0473]
2.25: Target same physical volume, $m_{l} / m_{s} \approx 1 / 7 \rightarrow 2 / 7$ $m_{s}=0.03, m_{\text {res }} \sim 0.0005$

Fitting Procedure

- Gaussian, Box, and Wall source quark propagators
- Average forward $\left(1+\gamma_{4}\right)$ and backward $\left(1-\gamma_{4}\right)$ propagating baryon states to improve signal
- Up to 4 sources on each configuration, spread over time, sometimes over space
- Measurement frequency as small as 10 monte-carlo time units, up to 40
- Measurements blocked into bins of size 40 monte-carlo time units

Propagator Summary

size	m_{l}	source type	correlators	source time slices	config's
24^{3}	0.005	Gauss $(r=7)$	nuc	$0,8,16,19,32,40,48,51$	932^{*}
24^{3}	0.005	Box	dec	0,32	90
24^{3}	0.01	Gauss $(r=7)$	nuc	$0,8,16,19,32,40,48,51$	357
24^{3}	0.01	Box	dec	0,32	90
24^{3}	0.02	Gauss $(r=7)$	nuc	$0,8,16,19,32,40,48,51$	99
24^{3}	0.02	Box	dec	0,32	43
24^{3}	0.03	Gauss $(r=7)$	nuc	$0,8,16,19,32,40,48,51$	106
24^{3}	0.03	Box	dec	0,32	44
32^{3}	0.004	Wall	dec, nuc	$0,16,32,48$	74
32^{3}	0.006	Wall	dec, nuc	$0,16,32$	90
32^{3}	0.008	Wall	dec, nuc	$0,16,32,48$	100

* Doubled sources, separated by 32 time slices in a pair

LHPC has calculated Gaussian props on 32^{3}

Fitting procedure

- Fit function (minus sign for Anti-Periodic BC):

$$
C(t)=A e^{-m t} \pm B e^{-m^{-} t}
$$

- Fully covariant fit to correlation function
- Errors from jackknife, covariance matrix calculated for each block
- choose fit range to minimize χ^{2}

Effective masses
Plateaus: Gaussian vs. 16^{3} Box (Nucleon (uud) 24^{3})

Effective masses

Plateaus: Wall (Ω (sss) 24^{3})

Effective masses
Plateaus: Wall (N and $\Omega 32^{3}$)

Wall not quite as good as box. Still need to compare to Gaussian

Spectrum: 24^{3}

Spectrum: 32^{3}

N^{*} is first excited state much more noisy
Ω not monotonic in m_{l} Need more statistics

Chiral Extrapolation of the nucleon mass (24^{3} only)

Finite volume effect in g_{A} (24^{3} only)

Chiral Extrapolation of the shifted nucleon mass (24^{3} only)

$m_{N}+\frac{3 g_{A}^{2}}{(4 \pi f)^{2}} m_{\pi}^{3}$
g_{A} from lattice at each m_{l}
$\chi^{2} \gg 1$
χ^{2} reduced by $\sim \times 3$
At heavier 3 masses, f.v. effect is $\lesssim 2 \pm 2 \%$

Using the Ω mass to set the scale (24^{3})

m_{Ω} analytic in m_{l}, robust chiral extrap
[Toussaint and Davies, Lattice 2004; Tiburzi and Walker-Loud (2005)]
$a^{-1}=1.729(28) \mathrm{GeV}$
[RBC/UKQCD arXive:0804.0473]

Edinburgh Plot

Lattice spacing errors mild
Statistical errors (only) relatively large

Vector is less robust

Summary/Outlook

- Baryon spectrum in reasonably good shape
- Need more critical analysis of chiral exptrapolation
- Important to handle finite volume systematics as $m_{l} \rightarrow 0$
- Continue to improve statistics at 32^{3}
- Thanks to Chris Dawson and Chris Maynard

Acknowledgments: This research is supported by the US DOE and RIKEN BNL Research Center. Computations done on the QCDOC supercomputers at BNL, Columbia University, and University of Edinburgh, and NYBlue at BNL.

