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Finite volume effects arise due to box boundary conditions
-

Example:
@
Two particles in free space,
interacting w/ short-ranged @ E(2,) =0
repulsive interaction
®

Two particles in a box of
volume L3, interacting w/ ,
short-ranged repulsive o

interaction 7 E(2,L) = 0 +[f(Lsa,r)

Finite volume effects + LQCD Infinite volume
scattering

allows for extraction of
) . parameters
hadron interactions lll.




These effects have been derived for two particles at the

beginning of time
-

= LUscher showed how these effects come about from field theory
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= Result can be generalized to excited A, states (3cm=0):
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= As well as other partial waves (ﬁcm=0):
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rn = cubic shell

gn = cuble shell degeneracy These results have allowed See, e.q.,

nem= 3 — I;_ — —aA for the extraction of two- NPLQCD
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Finite volume corrections have been derived for three- and

(recently) many-boson systems
-

= Three-boson result has been around since the beginning of time
as well:

e Huang & Lee (up to O(L?))
e More recently S. Tan (up to O(L"))
= Beane, Detmold & Savage have derived a general multi-boson
result good to order 1/L7 that includes dressed three-boson
Eo(n,L) = %(“){1 ~(=5)7+ (i)'2 [72 + (2n - 5)7] Has allowed
extraction of three-
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Can similar results be obtained for (spin 1/2) fermions?

= Obviously, fermions must satisfy Pauli-exclusion
principle

* For n>2 fermions, have non-zero relative (jacobi)

momentum (at least two fermions must have back-
to-back momenta)

= NOT perturbatively connected to zero energy (n>2)

e Three fermions are perturbatively connected to first
cubic shell

e Unlike bosons, spatial part of ground state is not
generally in the A, cubic irrep

General finite-volume effects formula

for many-fermions is hard to come by,
so let’s just look at 3 fermions UL-




We employ standard method of separating relative and CM
degrees of freedom

‘single-particle Ry
9 p ‘jacobi basis’
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Pauli principle is enforced using anti-symmetric projection

operator
-

We build anti-symmetric states
by first projecting with

1 anti-symmetrizes
P2 = 5 (1 - P12) particles 1 & 2
Then with
anti-symmetrizes 1
particle 3 with > g (1 'P13'P23)

particles 1&2

States are anti-symmetric, but

not states of definite cubic

symmetry UL-




Use standard group theoretical methods to enforce anti-
symmetric states of definite cubic symmetry

irrep=A,A,, T,T,E

character of regular

dimension of irrep g
representation

X
n,. g

Pir _
24 4

24 rotation operators

Method can determine excited
states as well

Here we project on
the spatial
component of the
wave function only
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We use non-relativistic, local interaction parametrization
[

4ma T 2 4+ p?
Vo(P',p) = mo [1+a020(p 2p +. .. (s-wave)
12ma; , ar, [ p? + p?
Vs = o1+ 2 (Fg ) + | v
a, = scattering length a, = scattering volume
r, = effective range r, = effective momentum
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Three identical spin-1/2 (G,) fermions (e.g. three neutrons)
-
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A closer look at three identical fermions
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Let’s include isospin and look at, e.g., 1 proton, 2 neutron system
[
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A closer look at 1 proton, 2 neutrons
[
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The future. ..
[

= As m_ approaches physical pion mass, know that nucleon
interaction is not of natural scale--perturbation theory breaks down

e For two nucleons, have exact eigenvalue method

* For three nucleons, we are formulating a Faddeev-like method
to work in this regime

= Just like in the 3-boson case, naive dimensional analysis has the
three-nucleon force coming in at O(L®): 1y d(r4-r,) 0(ry-rs)

= Tensor force: agp[[01®02], ® [VR®V],],
 Tritium ground state suppressed to O(L™)
» Excited states comes in at O(L~)

We will be able to extract

these terms from future
LQCD studies
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