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Introduction

Theoretically, topological susceptibility is defined as

χt =

∫

d4x 〈ρ(x)ρ(0)〉 , ρ(x) =
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)]
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χt =
mqΣ

Nf

+ O(m2
q) (Nf with same mass mq)
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(

1

mu

+
1
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+
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ms
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+ O(m2
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Introduction (cont)

For lattice QCD with fixed topology in a finite volume,
χt is the most crucial quantity which is used to relate any
observable measured in the fixed topology to its physical
value. (For application to mπ and fπ, see J. Noaki’s talk)
Brower, Chandrasekaran, Negele, Wiese, PLB 560 (2003) 64

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508
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For lattice QCD with fixed topology in a finite volume,
χt is the most crucial quantity which is used to relate any
observable measured in the fixed topology to its physical
value. (For application to mπ and fπ, see J. Noaki’s talk)
Brower, Chandrasekaran, Negele, Wiese, PLB 560 (2003) 64

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508

In other words, the artifacts due to fixed topology can be
removed, provided that χt has been determined.
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Introduction (cont)

Since

χt =

∫

d4x 〈ρ(x)ρ(0)〉 =
1

Ω

〈

Q2
t

〉

, Ω = volume

where

Qt =

∫

d4x
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)] = integer

one can obtain χt by counting the number of gauge
configurations for each topological sector.
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Introduction (cont)

Since

χt =

∫

d4x 〈ρ(x)ρ(0)〉 =
1

Ω

〈

Q2
t

〉

, Ω = volume

where

Qt =

∫

d4x
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)] = integer

one can obtain χt by counting the number of gauge
configurations for each topological sector.

However, for a set of gauge configurations in the
topologically-trivial sector, Qt = 0, it gives χt = 0
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Introduction (cont)

Even for a topologically-trivial gauge configuration, it may
possess near-zero modes due to excitation of instanton
and anti-instanton pairs, which are the origin of
spontaneous chiral symmetry breaking in the infinite
volume limit.
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Introduction (cont)

Even for a topologically-trivial gauge configuration, it may
possess near-zero modes due to excitation of instanton
and anti-instanton pairs, which are the origin of
spontaneous chiral symmetry breaking in the infinite
volume limit.

Thus, one can investigate whether there are topological
excitations within any sub-volumes, and to measure the
topological susceptibility using the correlation of the
topological charges of two sub-volumes.
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Introduction (cont)

For any topological sector with Qt, using saddle-point
expansion, it can be shown that

lim
|x−y|→∞

〈ρ(x)ρ(y)〉 =
1

Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+ O(Ω−3)

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508
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(
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t

Ω
− χt −

c4

2χtΩ
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+ O(Ω−3)

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508

Thus, in the trivial sector with Qt = 0, for any two widely
separated sub-volumes Ω1 and Ω2, the correlation of their
topological charges would behave as

〈Q1Q2〉 ' −
Ω1Ω2

Ω

(

χt +
c4

2χtΩ

)

Qi =

∫

Ωi

d4x ρ(x)
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Introduction (cont)

On a finite lattice, consider two spatial sub-volumes at
time slices t1 and t2, measure the correlation function

C(t1 − t2) = 〈Q(t1)Q(t2)〉 =
∑

~x1, ~x2

〈ρ(x1)ρ(x2)〉
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Introduction (cont)

On a finite lattice, consider two spatial sub-volumes at
time slices t1 and t2, measure the correlation function

C(t1 − t2) = 〈Q(t1)Q(t2)〉 =
∑

~x1, ~x2

〈ρ(x1)ρ(x2)〉

Then its plateau at large |t1 − t2| can be used to extract χt,
provided that

|c4| � 2χ2
tΩ, c4 = −

1

Ω

[

〈Q4
t 〉θ=0 − 3〈Q2

t 〉
2
θ=0

]

However, on a lattice, it is difficult to extract ρ(x)
unambiguously from the link variables !
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Topology with Overlap Dirac Operator

It is well known that the topological charge density can be
defined via the overlap Dirac operator as

ρ(x) = tr[γ5(1 − rD)x,x], r =
1

2m0

where D is the overlap Dirac operator

D = m0(1 + V ), V = γ5

Hw
√

H2
w

,

Hw = γ5(−m0 + γµtµ + W )
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Topology with Overlap Dirac Operator (cont)

Here ρ(x) = tr[γ5(1 − rD)x,x] is justified to be a definition
of topological charge density since it has been asserted
(Kikukawa & Yamada, 1998)

ρ(x)
a→0
−→

1

32π2
εµνλσtr[Fµν(x)Fλσ(x)]
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Topology with Overlap Dirac Operator (cont)

Here ρ(x) = tr[γ5(1 − rD)x,x] is justified to be a definition
of topological charge density since it has been asserted
(Kikukawa & Yamada, 1998)

ρ(x)
a→0
−→

1

32π2
εµνλσtr[Fµν(x)Fλσ(x)]

Note that the index theorem on the lattice

index(D) = n+ − n− =
∑

x

ρ(x) = Qt

had been observed by Narayanan and Neuberger in
1995, using the spectral flow of Hw(m0), before the
Ginsparg-Wilson relation was rejuvenated in 1998.
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Topology with Overlap Dirac Operator (cont)

It seems natural to use ρ(x) = tr[γ5(1 − rD)x,x] to compute the
topological susceptibility

χt =
1

Ω
〈Q2

t 〉 =
1

Ω

∑

x,y

〈ρ(x)ρ(y)〉 =
∑

x

〈ρ(x)ρ(0)〉
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Topology with Overlap Dirac Operator (cont)

It seems natural to use ρ(x) = tr[γ5(1 − rD)x,x] to compute the
topological susceptibility

χt =
1

Ω
〈Q2

t 〉 =
1

Ω

∑

x,y

〈ρ(x)ρ(y)〉 =
∑

x

〈ρ(x)ρ(0)〉

On the other hand, one can derive the relation

index(D) = m
∑

x

tr[γ5(Dc + m)−1
x,x] = m Tr[γ5(Dc + m)−1]

where

Dc = D(1 − rD)−1 = 2m0(1 + V )(1 − V )−1

is chirally symmetric but non-local (Chiu & Zenkin, 1998). Note that
for the topologically-trivial configurations , Dc is well-defined (without
any poles).
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Topology with Overlap Dirac Operator (cont)

Thus one can regard

ρ1(x) = m tr[γ5(Dc + m)−1
x,x]

as a definition of topological charge density, for any valence quark
mass m.
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Topology with Overlap Dirac Operator (cont)

Thus one can regard

ρ1(x) = m tr[γ5(Dc + m)−1
x,x]

as a definition of topological charge density, for any valence quark
mass m.

Obviously, the identity index(D) = m Tr[γ5(Dc + m)−1] can be
generalized to

index(D) = m1m2 · · ·mkTr[γ5(Dc + m1)
−1(Dc + m2)

−1 · · · (Dc + mk)
−1]

with the generalized topological charge density

ρk(x) = m1m2 · · ·mktr[γ5(Dc + m1)
−1(Dc + m2)

−1 · · · (Dc + mk)
−1]x,x
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Topology with Overlap Dirac Operator (cont)

Presumably, any ρk can be used to compute χt.

In general,

χt =
m1 · · ·mkmk+1 · · ·ml

Ω
〈Tr[γ5(Dc + m1)

−1 · · · (Dc + mk)
−1] ×

Tr[γ5(Dc + mk+1)
−1 · · · (Dc + ml)

−1]〉
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Topology with Overlap Dirac Operator (cont)

Presumably, any ρk can be used to compute χt.

In general,

χt =
m1 · · ·mkmk+1 · · ·ml

Ω
〈Tr[γ5(Dc + m1)

−1 · · · (Dc + mk)
−1] ×

Tr[γ5(Dc + mk+1)
−1 · · · (Dc + ml)

−1]〉

It has been pointed out by Lüscher, for k ≥ 2 and l ≥ 5,
χt avoids the short-distance singularities in the continuum
limit.
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Topological Fluctuations with fixed Qt

On a finite lattice,

lim
|x−y|�1

〈ρ1(x)ρ1(y)〉 '
1

Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+ O(e−mπ |x−y|)

+O(e−mη′ |x−y|) + O(Ω−3) + · · ·

is contaminated by mπ, mη′, · · · , which can couple to 〈ρ1(x)ρ1(y)〉.
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But, what is the contribution due to the c4 term ?
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Topological Fluctuations with fixed Qt (cont)

lim
|xi−xj |�1

m4
q〈η

′(x1)η
′(x2)η

′(x3)η
′(x4)〉 =

3χ2
t

Ω2

(

1 −
Q2

t

χtΩ
+

c4

χ2
t Ω

)2

+O(e−mη′ |xi−xj |) + O(Ω−4) + · · ·

Aoki, Fukaya, Hashimoto, Onogi, PRD 76 (2007) 054508
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Topological Fluctuations with fixed Qt (cont)

lim
|xi−xj |�1

m4
q〈η

′(x1)η
′(x2)η

′(x3)η
′(x4)〉 =

3χ2
t

Ω2

(

1 −
Q2

t

χtΩ
+

c4

χ2
t Ω

)2

+O(e−mη′ |xi−xj |) + O(Ω−4) + · · ·
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lim
|x−y|�1

m2
q 〈η

′(x)η′(y)〉 '
1

Ω

(

Q2
t

Ω
− χt −

c4

2χtΩ

)

+ O(e−mη′ |x−y|)

+O(Ω−3) + · · ·

Measure the 2-pt and 4-pt functions of η′ can determinate both χt

and

y ≡
c4

2χ2
t Ω
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Topological Fluctuations with fixed Qt (cont)

Suppose the asymptotic values of 2-pt and 4-pt functions of η′ are
−k2 and k4 respectively, then χt and y can be solved as

χt =
Q2

t

Ω
+ Ω

(

2k2 −
√

k4/3
)

y = −

(

√

k4/3 − k2

)

√

k4/3 − 2k2

(

1 −
Q2

t

χtΩ

)
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Topological Fluctuations with fixed Qt (cont)

Suppose the asymptotic values of 2-pt and 4-pt functions of η′ are
−k2 and k4 respectively, then χt and y can be solved as

χt =
Q2

t

Ω
+ Ω

(

2k2 −
√

k4/3
)

y = −

(

√

k4/3 − k2

)

√

k4/3 − 2k2

(

1 −
Q2

t

χtΩ

)

If one neglects the y term in 2-pt and 4-pt functions of η′, one obtains

χt '
Q2

t

Ω
+ Ωk2

χt '
Q2

t

Ω
+ Ω

√

k4/3

which provide another two independent estimates of χt.
If |y| � 1, then all 3 eqs give compatible values of χt.
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Lattice Setup (see S. Hashimoto’s talk, and H. Matsufuru’s poster)

� Lattice size: 163 × 48

� Gluons: Iwasaki gauge action at β = 2.30

� Quarks (Nf = 2 + 1): overlap Dirac operator with m0 = 1.6

� Add extra Wilson fermions and pseudofermions

det(H2
ov) −→ det(H2

ov)
det(H2

w)

det(H2
w + µ2)

, µ = 0.2

to forbid λ(Hw) crossing zero, thus Qt is invariant.

� Quark masses: mu = 0.015, 0.025, 0.035, 0.050, 0.100,
each of 500 confs, with ms = 0.100, and Qt = 0.

� For each configuration, 80 conjugate pairs of low-lying
eigenmodes of overlap Dirac operator are projected.
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Saturation of Cη′(t) by low-lying eigenmodes

Cη′(t) =
1

L3T

T
∑

u=1

∑

~xi

〈η′(~x2, u + t)η′(~x1, u)〉

mu = 0.015,  ms = 0.100

t
5 10 15 20

-0.002

-0.001

0.000

0.001

0.002

nev=80 
nev=60 
nev=40 
nev=20 

C
η

'(t
)
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Saturation of C4η′(t) by low-lying eigenmodes

C4η′(t) =
1

L3T

T
∑

u=1

∑

~xi

〈η′(~x4, u + 3t)η′(~x3, u + 2t)η′(~x2, u + t)η′(~x1, u)〉

mu = 0.015,  ms = 0.100

t
5 10 15 20

0.00

0.01

0.02

0.03

nev=80 
nev=60 
nev=40 
nev=20 

C
4 η

'(t
)
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Cη′(t)
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C4η′(t)
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Results of χt and y
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Realization of the Leutwyler-Smilga relation

mq[GeV]
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ChPT fit (Nf = 2+1)

Fitting χt to δ + Σ
(

1

mu
+ 1

md
+ 1

ms

)−1

for

mua = 0.015, 0.025, 0.035, 0.050, it gives a3Σ = 0.00185(10) and
δ = −4.1(1.1) × 10−6.
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Fitting χt to δ + Σ
(
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)−1

for

mua = 0.015, 0.025, 0.035, 0.050, it gives a3Σ = 0.00185(10) and
δ = −4.1(1.1) × 10−6.
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Determination of Σ

With a−1 = 1833(12) MeV (see H. Matsufuru’s poster), and
ZMS

m (2 GeV) = 0.826(8) (see J.Noaki’s talk), the value of a3Σ
is transcribed to

ΣMS(2 GeV) = (240 ± 5 ± 2 MeV)3 (Nf = 2 + 1)
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Determination of Σ

With a−1 = 1833(12) MeV (see H. Matsufuru’s poster), and
ZMS

m (2 GeV) = 0.826(8) (see J.Noaki’s talk), the value of a3Σ
is transcribed to

ΣMS(2 GeV) = (240 ± 5 ± 2 MeV)3 (Nf = 2 + 1)

which is in good agreement with

ΣMS(2 GeV) = (242 ± 5 ± 10 MeV)3 (Nf = 2)

extracted from χt measured in Nf = 2 QCD.
S. Aoki et al. (JLQCD and TWQCD Collaborations) PLB 665 (2008) 294, arXiv:0710.1130 [hep-lat]
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Conclusion and Outlook

� For the topologically-trivial gauge configurations generated with
Nf = 2 + 1 overlap quarks constrainted by extra Wilson and
pseudofermions, they possess topologically non-trivial excitations
(e.g., instanton and anti-instanton pairs) in sub-volumes.
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t Ω
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Conclusion and Outlook

� For the topologically-trivial gauge configurations generated with
Nf = 2 + 1 overlap quarks constrainted by extra Wilson and
pseudofermions, they possess topologically non-trivial excitations
(e.g., instanton and anti-instanton pairs) in sub-volumes.

� These near-zero modes allow us to determine χt and Σ.

� The Leutwyler-Smilga relation χt = Σ
(

1

mu
+ 1

md
+ 1

ms

)−1

is

realized with ΣMS(2 GeV) = 240(5)(2) MeV, in good agreement
with our previous result obtained in Nf = 2 QCD.

� |y| = |c4|

2χ2

t Ω
< 0.1 for mua = 0.015, 0.025, 0.035, 0.050

� Can we also determine the mass of η′ ?
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