# Topological susceptibility from lattice QCD



## Urs Wenger University of Bern

Lattice 2008 - Williamsburg, 14 July 2008

Quantum Chromodynamics (QCD)

$$\mathcal{L}_{ ext{QCD}} = ar{\psi}(\emph{i} D - \emph{m}_q) \psi - rac{1}{4} G_{\mu
u} G^{\mu
u}$$

- parameters are the quark masses *m<sub>q</sub>* and the dimensionless gauge coupling,
- in the chiral limit m<sub>q</sub> → 0, a scale is generated through dimensional transmutation,
- all dimensionful quantities can be expressed in units of one characteristic scale, e.g. the proton mass,

There is another mass generating mechanism:

- spontaneous breaking of chiral symmetry produces eight (or three) massless Goldstone bosons,
- while the flavour-singlet meson  $\eta'_{(or \eta_2)}$  becomes massive.
- Mass is generated through topological charge fluctuations.
- This non-perturbative effect is mediated through disconnected contributions.

• For  $N_f$  degenerate fermions of mass  $m_q$  we have

$$N_f Q = m_q \sum_{\mathbf{x}} \bar{\psi} \gamma_5 \psi = \sum_{\mathbf{x}} \frac{m_q \gamma_5}{D + m_q}$$

in the limit as  $m_q \rightarrow 0$ .

• For twisted mass fermions we have in the twisted (lattice) basis  $Z_P \bar{\psi} \gamma_5 \psi \rightarrow i Z_S \bar{\chi} \tau_3 \chi$  and hence

$$N_{f}\rho(\mathbf{x}) = i\frac{Z_{S}}{Z_{P}}\mu_{q}\bar{\chi}\tau_{3}\chi = \frac{Z_{S}}{Z_{P}}\frac{i\mu_{q}\tau_{3}}{D_{W} + i\mu_{q}\tau_{3}\gamma_{5}}$$

- Note that  $Z_S/Z_P = Z_\mu Z_S$  since  $Z_\mu Z_P = 1$ .
- The topological charge is the sum of that density over the whole lattice.

## Fermionic topological charge density

- Density is the same (up to a proportionality factor) that we use for the *disconnected correlator* of the flavour-singlet η'.
- If we define  $\mu_q d(t) = \sum_{\mathbf{x}} \rho(\mathbf{x})$  at time *t*, then the disconnected correlator is

$$D(t) = (Z_P/Z_S)^2 \sum_{t'} d(t') d(t+t')/V$$

The topological susceptibility is

$$\chi = \frac{1}{V} \sum_{x,y} \rho(x) \rho(y) = \frac{\mu_q^2}{V} \sum_{t,t'} d(t) d(t')$$

and hence

$$\chi = (Z_{\mathrm{S}}/Z_{\mathrm{P}})^2 \mu_q^2 \sum_t D(t).$$

 Vice versa, the disconnected η' correlator can be calculated from the (gluonic) charge density correlator.

## Topological susceptibility for light quarks

The full η' correlator has connected (C) and disconnected (D) components:

$$C_{\mathrm{tot}}(t) = C(t) - 2D(t) \sim \mathrm{e}^{-m(\eta')t}$$

 At small quark mass the connected piece is dominated by the pion

$$C(t) = g_\pi^2 e^{-m(\pi)t}/2m(\pi),$$

• If the  $\eta'$  is finite in the chiral limit, we have that

$$D(t) = (C(t) - C_{\rm tot}(t))/2$$

is dominated by the ground state pion in C(t).

• Summing this over t gives the top. susceptibility

$$\chi = \frac{1}{2} (Z_{\rm S}/Z_{\rm P})^2 \mu_q^2 g_{\pi}^2 / m(\pi)^2$$

• For twisted mass pions, at maximal twist and finite *a*, the connected contributions to  $\pi^+$  and  $\pi^0$  are different, however,

$$g_{\pi^0}=rac{Z_{\mathcal{S}}}{Z_{\mathcal{P}}}g_{\pi^+}.$$

From the vector Ward identity we have

$$g_{\pi^+} = m(\pi^+)^2 f_{\pi^+}/(2\mu_q),$$

and hence

$$\chi = f_{\pi^+}^2 m(\pi^+)^4 / 8m(\pi_{\rm conn}^0)^2.$$

• In the continuum limit  $m(\pi^+) = m(\pi^0_{\text{conn}})$ , so

$$\chi = f_{\pi^+}^2 m (\pi^+)^2 / 8$$

In practice, connected pion dominance is not fullfilled:

$$\sum_t 2D(t) = 0.65 \sum_t C(t),$$

so chiral formula overestimates  $\chi$ , e.g.,

 $r_0^4 \chi = 0.0030$  from chiral formula,  $r_0^4 \chi = 0.0020$  from direct evaluation

at lowest quark mass at  $\beta = 4.05$ .



Red line from TM formula for  $\beta = 4.05$ , green line is continuum  $\chi$ PT.

• An astonishing property of the charge correlator is

 $\langle q(0)q(x)\rangle < 0$  for x > 0

due to reflection positivity, however,

$$\chi = \sum_{\mathbf{x}} \langle q(\mathbf{0})q(\mathbf{x}) \rangle > \mathbf{0}$$
.

- Correlator (q(0)q(x)) contains contact term at x = 0 which is (partially) canceled at x > 0.
- Define field theoretic topological charge density via

$$q(\mathbf{x}) = rac{1}{16\pi^2} \mathrm{tr} \left[ F_{\mu
u}(\mathbf{x}) ilde{F}_{\mu
u}(\mathbf{x}) 
ight].$$





 $\Rightarrow$  contact term, smeared out over one lattice spacing.









 $\Rightarrow$  very noisy due to contributions at large *r*.

Smoothing gauge field to suppress ultraviolet fluctuations:



 $\Rightarrow$  signal is very much improved.





 $\Rightarrow$  contact term is smeared over larger range.





 $\Rightarrow$  autocorrelation is essentially absent (self-averaging).



• Signal at large *r* remains unaffected by smearing:

 $\Rightarrow$  this is just the disconnected part of the  $\eta'$ -correlator.









Sum over space gives the susceptibility, but



 $\Rightarrow$  noise at large *r* distorts the signal.





 $\Rightarrow$  signal is stabilised and more reliable.



⇒ needs additive an multiplicative renormalisation...

## • Renormalisation constants from charge distribution:



⇒ multiplicative renormalisation from shift of peaks, additive renormalisation from width.

## • Renormalisation constants from charge distribution:



⇒ multiplicative renormalisation from shift of peaks, additive renormalisation from width.

- We have elaborated on the connection of the topological susceptibility and the disconnected η'-correlator.
- We find that *χ<sub>t</sub>* is indeed suppressed towards the chiral limit and vanishes at *m<sub>q</sub>* → 0.
- Gluonic definition of the charge correlator contains information on the disconnected η'-correlator.
- Gluonic point-to-point correlators can be useful to cheaply extract (fermionic) physics.

Determination of gluonic  $\chi_t$  is underway, but needs multiplicative and additive renormalisation.

#### Topological susceptibility from gauge fields







## Topological susceptibility from gauge fields

Illustration on 12<sup>4</sup> at  $\beta = 6.0$  with HYP3 smearing:







