Conclusion and outlook O

Lattice QCD with Eight Degenerate Quark Flavors

Xiao-Yong Jin, Robert D. Mawhinney

Columbia University

Lattice 2008

Outline

Conclusion and outlook O

Introduction

Simulations and results

Preparations Results

Conclusion and outlook

Conclusion and outlook O

Phase diagram

[Dennis D. Dietrich, Francesco Sannino, arXiv:hep-ph/0611341v1]

Recent works on the lattice

- SU(2), 2 flavors in symmetric representation Simon Catterall, Francesco Sannino, arXiv:0705.1664v1 [hep-lat]
- SU(2), 2 flavors in adjoint representation. Luigi Del Debbio, Agostino Patella, Claudio Pica, arXiv:0805.2058v1 [hep-lat]
- Running of coupling using Schrodinger functional. Thomas Appelquist, George T. Fleming, Ethan T. Neil, Phys. Rev. Lett. 100, 171607 (2008), (arXiv:0712.0609v2 [hep-ph])
- Finite temperature phase transition of 8 flavors using Asqtad. Albert Deuzeman, Maria Paola Lombardo, Elesabetta Pallante, arXiv:0804.2905v2 [hep-lat]
- And much more in this conference.

Outline

Conclusion and outlook O

Introduction

Simulations and results Preparations Results

Conclusion and outlook

Conclusion and outlook O

Algorithm test in 4 flavors

Comparison between RHMC and Φ algorithm using naive staggered fermion, Wilson gauge, $N_f=4,\,m_q=0.015,\,\beta=5.4$

Algorithm	Φ	RHMC
Plaquette	0.560130(14)	0.560072(30)
$\langle \bar{\psi} \psi \rangle$	0.0404(1)	0.04105(19)
\mathfrak{m}_{π}	0.3210(40)	0.3191(36)
\mathfrak{m}_{π_2}	0.3543(35)	0.361(20)
$\mathfrak{m}_{ ho}$	0.4763(59)	0.481(10)
\mathfrak{m}_{ρ_2}	0.4777(84)	0.459(40)

Results of Φ algorithm are from ChengZhong Sui, Ph. D. thesis, Columbia University, 2000.

Conclusion and outlook O

DBW2 improved gauge action

- More dynamic flavors on the lattice make the gauge field rougher.
- DBW2 smooths out the gauge field.
- DBW2 with naive staggered fermion runs fast.

Effect on taste symmetry breaking

Pion mass splitting

- Quenched results from M. Cheng, et. al., arXiv:hep-lat/0612030v1.
- Dark blue symbol is dynamic result from staggered DBW2 action with 2 flavors.

Simulations and results

Outline

Conclusion and outlook O

Introduction

Simulations and results Preparations Results

Conclusion and outlook

 Conclusion and outlook O

Simulation Details

β	Size	\mathfrak{m}_q	Trajectories	$\langle \bar{\psi}\psi \rangle$	$\mathfrak{m}_{ ho}$	r_0
0.58	$16^{3} \times 32$	0.025	$1330\sim 2760$	0.09973(27)	0.812(11)	4.39(56)
		0.015	$880\sim 1950$	0.06582(13)	0.619(13)	5.05(78)
	$24^3 \times 32$	0.025	$1060\sim 3390$	0.100381(67)	0.7832(30)	4.126(96)
		0.015	$960\sim 2930$	0.06652(11)	0.6126(28)	5.10(11)
0.56	$16^{3} \times 32$	0.024	$970\sim 4920$	0.13643(20)	0.9431(38)	3.19(18)
		0.016	$1040\sim3730$	0.10147(26)	0.803(12)	3.68(15)
	$24^3 \times 32$	0.024	$1010\sim 3340$	0.13668(14)	0.9693(69)	3.120(48)
		0.016	$1040\sim3190$	0.10208(12)	0.8085(93)	3.793(97)
		0.008	$1000\sim 2970$	0.06148(16)	0.6022(73)	4.716(92)
0.54	$16^{3} \times 32$	0.03	$1010\sim 6220$	0.23100(20)	1.258(17)	2.197(52)
		0.02	$990\sim5300$	0.19646(28)	1.176(19)	2.350(47)
		0.01	$1030\sim 5520$	0.14464(37)	0.993(14)	2.849(51)
	$24^3 imes 32$	0.01	$1070\sim 2860$	0.14393(39)	1.022(17)	2.830(48)

- Trajectory length is 0.5 in MD unit.
- Measurements are done every 10 trajectories.
- All simulation of lattice size $24^3 \times 32$ and some of $16^3 \times 32$ are done on NYBlue(BlueGene/L).

 Conclusion and outlook O

Evolution of $\langle \bar{\psi}\psi \rangle$, $\beta = 0.58$, $m_q = 0.015$

Staggered DBW2, $\beta = 0.58$, $m_q = 0.015$, 8 flavors, $16^3 \times 32$

 Conclusion and outlook O

Evolution of $\langle\bar\psi\psi\rangle,\,\beta=0.54,\,m_q=0.01$

Staggered DBW2, $\beta = 0.54$, $m_q = 0.01$, 8 flavors

Simulations and results

Conclusion and outlook O

Heavy quark potential

Heavy quark potential measured on ensemble of $\beta=0.56,$ $m_q=0.008,$ with lattice size of $24^3\times32$

r

Simulations and results

Conclusion and outlook O

r₀ from heavy quark potential

Simulations and results

Conclusion and outlook O

 r_1 from heavy quark potential

 r_1

Conclusion and outlook O

Chiral condensate — Chiral extrapolation

Chiral condensate — a^2 dependence

Unrenormalized chiral condensate in naive linear extrapolation.

Goldstone Pion mass — Chiral extrapolation

Non-Goldstone Pion mass — Chiral extrapolation

- Scalar channel of the meson propagators.
- Corresponds to $r^{\sigma_s \sigma_{123}} = 1 + +$

Conclusion and outlook O

Rho mass — Chiral extrapolation

Simulations and results

Conclusion and outlook O

Conclusion and outlook

Conclusion and outlook

- Conclusion
 - System behaves as in normal chiral symmetry breaking phase.
 - $\langle\bar\psi\psi\rangle$ obtains non zero value in the chiral limit and continuum limit.
 - Goldstone Pion mass vanishes in the chiral limit.
- Outlook
 - Deal with chiral logarithms, if high quality results are needed.
 - Investigate rapid transition from $\beta = 0.56$ to $\beta = 0.54$.
 - Explore into the proposed conformal window (More flavors!).