Approximate forms of the density of states in pure gauge theory

Yannick Meurice
The University of lowa
yannick-meurice@uiowa.edu
Lattice 2008, July 18, 2008
With A. Denbleyker, D. Du, Y. Liu and A. Velytsky

Content of the talk

- Motivations
- The density of states (definition and properties)
- Numerical study of finite size effects
- Apparent convergence of series expansions
- Conclusions and perspectives

See arXiv:0807.0185 [hep-lat]

Motivations

Problems that can be addressed using the density of states:

- How to combine weak and strong coupling expansions
- Study of finite size effects for small lattices
- Large order behavior of perturbative series
- Location of Fisher's zeros for large lattices (poster)

Figure 1: Fisher's zeros from the density of states with a numerical interpolation (left) and a polynomial approximation (right).

The density of states

Focus: $S U(2)$, Wilson's action, L^{4} lattice, periodic b. c.
$\mathcal{N}_{p}=6 \times L^{4}$ is the number of plaquettes
$Z(\beta)$ is the Laplace transform of $n(S)$, the density of states

$$
Z(\beta)=\int_{0}^{2 \mathcal{N}_{p}} d S n(S) \mathrm{e}^{-\beta S}
$$

with

$$
n(S)=\prod_{l} \int d U_{l} \delta\left(S-\sum_{p}\left(1-(1 / N) \operatorname{Re} \operatorname{Tr}\left(U_{p}\right)\right)\right)
$$

$\ln (n(S))$ is a "color entropy" (extensive).

A $S U(2)$ duality $\left(g^{2} \rightarrow-g^{2}\right.$ means $\left.S \rightarrow 2 \mathcal{N}_{p}-S\right)$

For cubic lattices with even number of sites in each direction and a gauge group that contains -1 , it is possible to change $\beta \operatorname{Re} \operatorname{Tr} U_{p}$ into $-\beta \operatorname{Re} \operatorname{Tr} U_{p}$ by a change of variables $U_{l} \rightarrow-U_{l}$ on a set of links such that for any plaquette, exactly one link of the set belongs to that plaquette (Li, YM PRD71 016008). This implies

$$
\begin{aligned}
& Z(-\beta)=\mathrm{e}^{2 \beta \mathcal{N}_{p}} Z(\beta) \\
& n\left(2 \mathcal{N}_{p}-S\right)=n(S)
\end{aligned}
$$

Thanks to this symmetry, we only need to know $n(S)$ for $0 \leq S \leq \mathcal{N}_{p}$. (Note $\langle S\rangle=\mathcal{N}_{p}$ means $\left.<\operatorname{Tr} U_{p}\right\rangle=0$)

The one plaquette case (Li, YM, PRD71 054509)

$$
n_{1 p l .}(S)=\frac{2}{\pi} \sqrt{S(2-S)}
$$

$n(S) \propto \sqrt{S}$ for small S implies $Z \propto \beta^{-3 / 2}$ for large β
$1 / \beta$ corrections can be calculated by expanding the remaining factor $\sqrt{2-S}$
Series with finite radius of convergence \rightarrow asymptotic series if we integrate over S from 0 to ∞ (instead of 0 to 2).

It is easier to approximate $n(S)$ than the corresponding partition function. Does this survive the infinite volume limit?
$n(S)$ near $S=2$ can be probed by taking $\beta \rightarrow-\infty$ in agreement with the common wisdom that the large order behavior of weak coupling series can be understood in terms of the behavior at small negative coupling.

Volume dependence

$$
f\left(x, \mathcal{N}_{p}\right) \equiv \ln \left(n\left(x \mathcal{N}_{p}, \mathcal{N}_{p}\right)\right) / \mathcal{N}_{p}
$$

The $S U(2)$ duality symmetry implies that

$$
f\left(x, \mathcal{N}_{p}\right)=f\left(2-x, \mathcal{N}_{p}\right)
$$

The existence of the infinite volume limit requires that

$$
\lim _{\mathcal{N}_{p} \rightarrow \infty} f\left(x, \mathcal{N}_{p}\right)=f(x),
$$

In the same limit, the integral can be evaluated by the saddle point method. The maximization of the integrand requires

$$
f^{\prime}(x)=\beta
$$

Numerical calculation

Figure 2: Results of patching $P_{\beta}(S) \mathrm{e}^{\beta S}$ for 4^{4} and 6^{4}.

Finite Volume Effects

Figure 3: The difference between $\ln (n(S)) / \mathcal{N}_{p}$ for 4^{4} and 6^{4}. The noise on the right is consistent with our understanding of the volume (in)dependence of the strong coupling expansion.

Volume dependence of the leading log

Figure 4: The difference between $\ln (n(S)) / \mathcal{N}_{p}$ (left) and $\left(\ln (n(S)) / \mathcal{N}_{p}\right) /$ $\ln \left(S / \mathcal{N}_{p}\right)$ (right) for 4^{4} and 6^{4}. Predicted value of the plateau is -0.0013 .

Weak and strong coupling expansions

Figure 5: Average plaquette (left) and $\ln (n(S)) / \mathcal{N}_{p}$ (right) compared to weak and strong coupling expansions $\left(x=S / \mathcal{N}_{p}\right)$.

Strong coupling expansion

$$
P(\beta) \simeq 1+\sum_{m=1} a_{2 m-1} \beta^{2 m-1}
$$

(From Balian et al.). With periodic b.c., topologically trivial graphs have volume independent contributions.

$$
\begin{gathered}
f(1+y)=g(y) \simeq \sum_{m=0} g_{2 m} y^{2 m} \\
h(y) \equiv g(y)-A\left(\ln \left(1-y^{2}\right)\right)
\end{gathered}
$$

In the infinite volume limit, we have $A=3 / 4$. Expanding

$$
h(y) \simeq \sum_{m=0} h_{2 m} y^{2 m}
$$

Figure 6: Logarithm of the absolute value of $g_{2 m}$ and $h_{2 m}$

Evidence for finite radius of convergence

Figure 7: Logarithm of the absolute value of the difference between the numerical data and the strong coupling expansion of P (left) and f (right) at successive orders. For reference, we also show the numerical errors.

Weak coupling expansion

$$
P(\beta) \simeq \sum_{m=1} b_{m} \beta^{-m}
$$

From Karsch, Heller, Alles et al.+ dilogarithm model for order 4 and higher; We assume the behavior

$$
f(x) \simeq A \ln (x)+\sum_{m=0} f_{m} x^{m}
$$

Using the saddle point, $\beta \simeq A / x \simeq A /\left(b_{1} / \beta\right)$ At finite volume, the saddle point calculation of P should be corrected in order to include $1 / V$ effects $\left(V=L^{D}\right)$. If we perform the Gaussian integration of the quadratic fluctuations, and use the V dependent value of b_{1} given below,

$$
A=(3 / 4)-(5 / 12)(1 / V)
$$

This leading coefficient correction, predicts a difference of $-0.0013 \ln (x)$ for the difference between $f(x)$ for a 4^{4} and 6^{4}. A closed form expression can be found using the zero mode contribution (Coste et al.) for b_{1}. For the case $N_{c}=2$ and $D=4$,

$$
b_{1}=(3 / 4)(1-1 /(3 V))
$$

Assuming that $\partial P / \partial \beta$ has a logarithmic singularity in the complex β plane and integrating (very successful for $S U(3)$, YM PRD74:096005)

$$
\sum_{m=1} b_{m} \beta^{-k} \approx C\left(\operatorname{Li}_{2}\left(\beta^{-1} /\left(\beta_{m}^{-1}+i \Gamma\right)\right)+\right.\text { h.c }
$$

with

$$
\mathrm{Li}_{2}(x)=\sum_{k=1} x^{k} / k^{2}
$$

Figure 8: Logarithm of the absolute value of the difference between the numerical data and the weak coupling expansion of P at successive orders (left) and without the zero mode (right).

Figure 9: Numerical value of $f(x)$ compared to the weak coupling expansion at successive orders (left). Logarithm of the absolute value of the difference between the numerical data and the weak coupling expansion of f at successive orders (right).

Expansion in Legendre polynomials

$$
\begin{gathered}
h(y) \equiv g(y)-A\left(\ln \left(1-y^{2}\right)\right) \\
f(1+y)=g(y) \simeq \sum_{m=0} g_{2 m} y^{2 m} \\
h(y)=\sum_{m=0} q_{2 m} P_{2 m}(y)
\end{gathered}
$$

Coefficients decay exponentially.

Approximations improve uniformly with the order.

Figure 10: Legendre polynomial coefficients $q_{2 m}$ with the three methods described in the text.

Figure 11: $h(y)$ together with the expansion in Legendre polynomials up to order 20 (left). Logarithm of the absolute value of the difference between the numerical data for $h(y)$ and expansions in Legendre polynomials at successive orders (right). $y=S / \mathcal{N}_{p}-1=-\sum_{p} \operatorname{Tr} U_{p} / \mathcal{N}_{p}$

Figure 12: P together with the expansion in Legendre polynomials up to order 20 (left). Logarithm of the absolute value of the difference between the numerical data for P and expansions in Legendre polynomials at successive orders (right).

Conclusions

- Good overlap of weak and strong coupling at low orders (but large orders similar to the plaquette)
- Finite size effects in the leading logarithm under control
- Apparent convergence of polynomial approximations after subtracting log. singularities (this allows us to work in the complex S plane).
- Application: Fisher's zeros (in progress)
- Plans: decimation in a multicoupling generalization of $n(S)$, finite size effects on asymmetric lattices, $U(1)$, first order PT,

Consider a lattice model in D dimensions, with lattice spacing a, linear size N, volume $V=N^{D}$ and nonlinear scaling variables u_{i}.

Under a RG transformation

$$
a \rightarrow \ell a ; N \rightarrow N / \ell ; u_{i} \rightarrow \ell^{y_{i}} u_{i}
$$

with ℓ a fixed value (e.g. 2) that cannot be shrunk to 1
For scalar models with average magnetization m

$$
V_{e f f}\left(\ell^{y_{m}} m, \ell^{y_{i}} u_{i}, N / \ell\right)=\ell^{D} V_{e f f}\left(m, u_{i}, N\right)
$$

For gauge models $\left(S U(2)\right.$ hereafter) with $\mathcal{N}_{p}=\frac{D(D-1)}{2} V$ plaquettes

$$
\begin{gathered}
Z\left(\beta,\left\{\beta_{i}\right\}\right)=\int_{0}^{2 \mathcal{N}_{p}} d S n\left(S,\left\{\beta_{i}\right\}\right) \mathrm{e}^{-\beta S}, \\
n\left(S,\left\{\beta_{i}\right\}\right)=\prod_{l} \int d U_{l} \delta\left(S-\sum_{p}\left(1-(1 / N) \operatorname{Re} T r\left(U_{p}\right)\right)\right) \mathrm{e}^{-\sum_{i} \beta_{i}\left(1-\chi_{i}\left(U_{p}\right) / d_{i}\right)} \\
f\left(s,\left\{\beta_{i}\right\}, \mathcal{N}_{p}\right) \equiv \ln \left(n\left(s \mathcal{N}_{p},\left\{\beta_{i}\right\}, \mathcal{N}_{p}\right)\right) / \mathcal{N}_{p}
\end{gathered}
$$

can be used as the effective potential if we can find a RG transformation for the $\left\{\beta_{i}\right\}$ associated with the characters χ_{i} (e.g. Migdal-Kadanoff)

$$
\lim _{\mathcal{N}_{p} \rightarrow \infty} f\left(s,\left\{\beta_{i}\right\}, \mathcal{N}_{p}\right)=f\left(s,\left\{\beta_{i}\right\}\right)
$$

