Quark mass renormalization with non-exceptional momenta

Y. Aoki (RIKEN-BNL)

RBC/UKQCD collaborations

7/16/08, Lattice 2008

This talk is based on the works:

- Non-perturbative renormalization of quark bilinear operators and B_K using domain wall fermions [arXiv:0712.1061]
 - RBC and UKQCD collaborations: Y.Aoki, P.A.Boyle,
 N.H.Christ, C.Dawson, M.A.Donnellan, T.Izubuchi, A.Juttner,
 S.Li, R.D.Mawhinney, J.Noaki, C.T.Sachrajda, A.Soni,
 R.J.Tweedie, A.Yamaguchi
 - idea of non-exceptional momenta and a demonstration
- Quark bilinear operators renormalized in MOM-scheme for the symmetric subtraction point [in preparation]
 - C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, and A. Soni
 - construction of a non-exceptional RI-MOM scheme for mass renormalization and 1 loop matching

quark mass

- results from $N_f=2+1$ domain-wall fermions ($\beta=2.13$)
 - (talk by E. Scholz, RBC/UKQCD: arXiv:0804.0473) $m_{ud}^{\overline{\text{MS}}}(2\text{GeV}) = 3.71(0.16)_{\text{stat}}(0.18)_{\text{syst}}(0.33)_{\text{ren}}\text{MeV},$

 $m_s^{\overline{\text{MS}}}(2\text{GeV}) = 107.3(4.4)_{\text{stat}}(4.9)_{\text{syst}}(9.7)_{\text{ren}}\text{MeV},$

- error from the renormalization dominates
 - systematic error in our renormalization program
- how it is obtained ?
- how we can improve ?

RI-MOM scheme

- impose renormalization condition on the vertex functions with off-shell quark states with momentum *p* at mass less limit: [Martinelli et al NPB445(95)81].
- renormalization condition on the vertex function Π of bilinear operator $O = \overline{u}\Gamma d$

$$\frac{Z_O}{Z_q} \frac{1}{12} \operatorname{Tr}(\Pi_O P_O) = 1$$
 at $p^2 = \mu^2, \ m \to 0$

- matching to a continuum scheme(MS) must be done at high energy to reduce
 - truncation error of continuum perturbation theory
 - contamination of non-perturbative effect (NPE)
 - \rightarrow These indeed are the main sources of the systematic error
- Window: $\Lambda_{QCD} \ll p \ll a^{-1}$

Typical NPE contamination in RI scheme

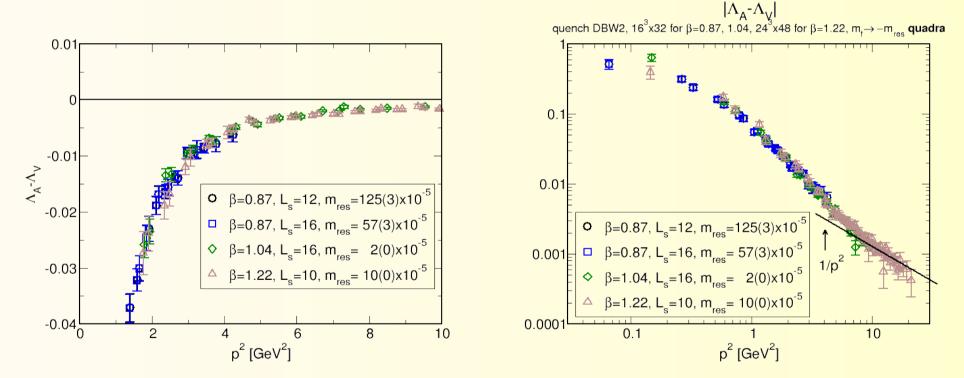
- 1/p² through Weinberg's theorem
 for the exceptional momenta
 used in the conventional RI:
 - one gluon exchange: $1/p^2$



- upper part affected by different NP depending on the opeator
- P: with pion pole
- S: double pole (quench) from topological near zero mode
- A-V: $1/p^2$
- suppressed if you can make sure momenta in every part of the diagram scales as p: non-exceptional momenta
 - P: no pion pole
 - S: no double pole
 - A-V: 1/p⁶ perhaps invisible

$$\Lambda_A - \Lambda_V$$

• quench DWF: $a^{-1} = 1.3, 2, 3 \text{ GeV}$



sRI scheme

 $q = p_1 - p_2$

- uses symmetric point: $p_1^2 = p_2^2 = q^2$; $(q_\mu = 0 \text{ in RI})$
- renormalization conditions: $\frac{Z_O}{Z} \frac{1}{12} \operatorname{Tr}(\Pi_O P_O) = 1$

$$sRI: \begin{cases} P_{S} = 1 \\ P_{P} = \gamma_{5} \\ P_{V} = \frac{1}{q^{2}} \not{q} q_{\mu} \\ P_{A} = \frac{1}{q^{2}} \gamma_{5} \not{q} q_{\mu} \end{cases} RI: \begin{cases} P_{S} = 1 \\ P_{P} = \gamma_{5} \\ P_{V} = \frac{1}{4} \gamma_{\mu} \\ P_{A} = \frac{1}{4} \gamma_{5} \gamma_{\mu} \end{cases}$$

• through Ward identity the conditions on V, A are compatible with

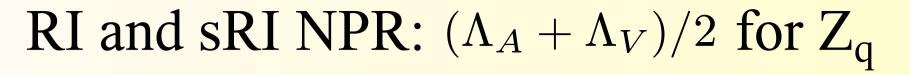
sRI:
$$Z_q(sRI)=Z_q(RI')$$

 $\frac{1}{p^2} \operatorname{Tr}[-i \not p S_R^{-1}(p)]\Big|_{p^2=\mu^2} = 1$
 $RI: V, (A at large p^2)$
 $\frac{1}{12} \operatorname{Tr}\left[-i \frac{\partial}{\partial \not p} S_R^{-1}(p)\right]\Big|_{p^2=\mu^2} = 1$

• S, P \rightarrow Z_m=1/Z_S=1/Z_P: condition on propagator sRI: $\lim_{m_R \to 0} \frac{1}{12m_R} \operatorname{Tr}[S_R^{-1}(p)]_{p^2 = \mu^2} = 1 + \lim_{m_R \to 0} \frac{1}{24m_R} \operatorname{Tr}[q_\mu \Pi_{A,R}^\mu \gamma_5]$

$sRI \rightarrow \overline{MS}$ perturbative matching

- $sRI \rightarrow \overline{\text{MS}}$ conversion factor $C_m = 1 + \frac{\alpha_s}{4\pi} C_F c_m^{(1)}$ $c_m^{(1)} = \begin{cases} 0.484 - 0.172\xi & (sRI) \\ 4 - \xi & (RI) \end{cases}$
 - sRI: smaller constant and gauge dependence
- size of 1-loop correction at $\mu = 2 \text{ GeV}$ in Landau gauge $\begin{cases}
 1.5\% & (sRI) \\
 12.3\% & (RI, 1 \text{ loop}) \\
 6.2\% & (RI, 3 \text{ loop})
 \end{cases}$
 - sRI: very small already at 1 loop

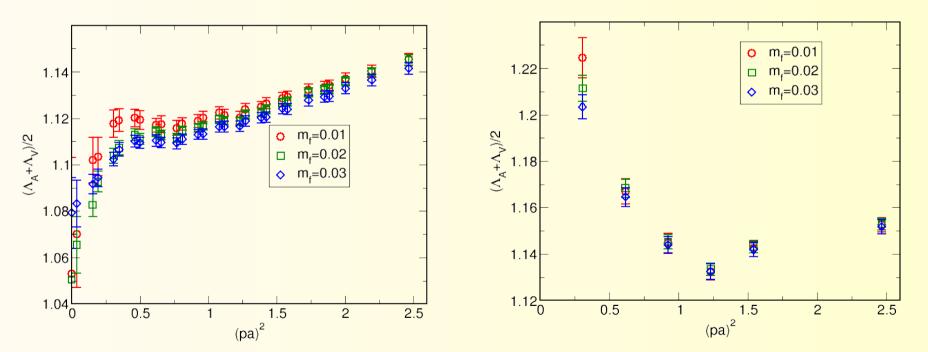


DWF $n_f = 2 + 1, \ \beta = 2.13, \ 16^3 \times 32$

• **RI**: $\Lambda_A = \frac{1}{48} \operatorname{Tr}(\Pi^{\mu}_A \cdot \gamma_5 \gamma_{\mu})$

• sRI:
$$\Lambda_A = \frac{1}{12q^2} \operatorname{Tr}(\Pi^{\mu}_A \cdot \gamma_5 \not q q_{\mu})$$

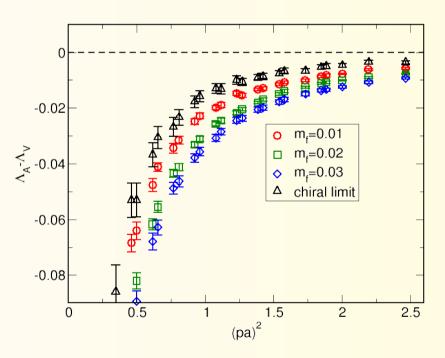
symmetric subtraction point, $P=q_v \gamma_v q_u$



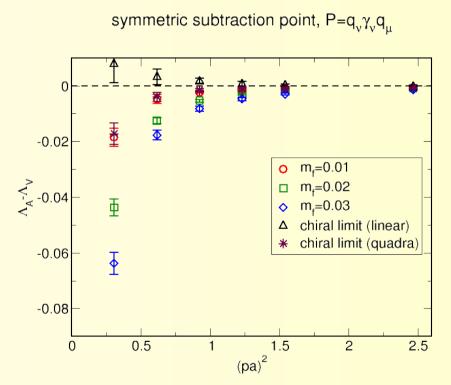
- tiny mass dependence

RI and sRI NPR: $(\Lambda_A - \Lambda_V)$

• RI

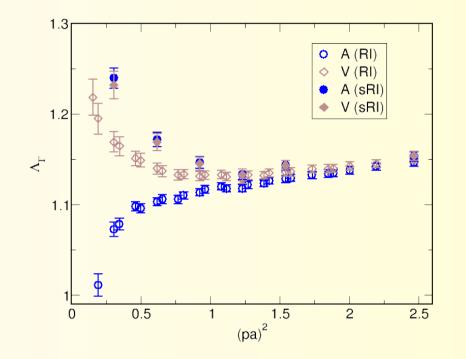


• sRI



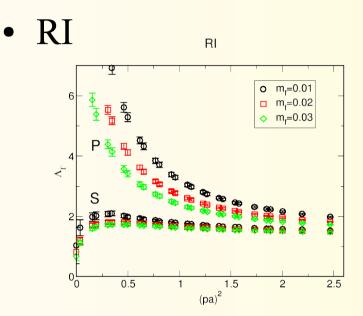
 invisible symmetry breaking effect at the chiral limit

A and V for RI and sRI



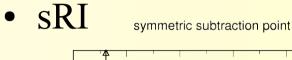
- A-V difference for RI, no difference for sRI
 - compatible with Ward identities
 - $\Lambda_V(RI) = Z_q/Z_A \to \Lambda_V(sRI) = Z'_q/Z_A$ for large p²
 - compatible with PT: these are same at $O(\alpha_s)$

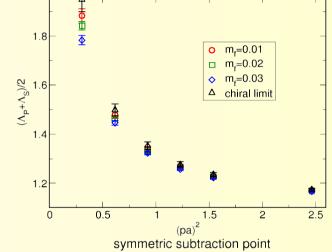
RI and sRI $\Lambda_{S,P} = Z_q Z_m$

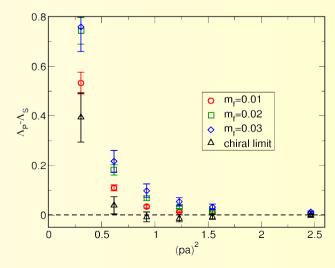


• mass dependence

- large (RI) \rightarrow large m_s error
- small (sRI)
- S, P symmetry
 - broken (RI), intact (sRI)







error budget on Z_m

sRI

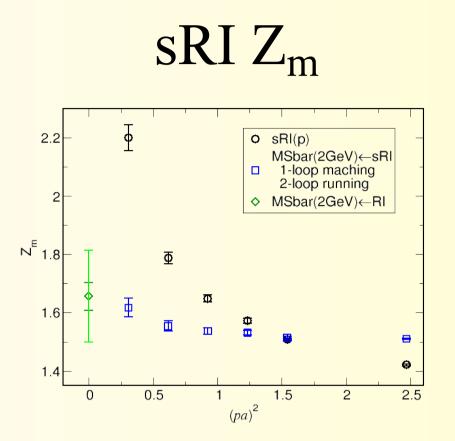
RI

- 7% from $m_s \neq 0$
 - NP contamination
- 6% from $O(\alpha_s^3)$
- 3% statistical

• 9% in total

• much smaller

- 1.5% already at $O(\alpha_s)$
- a little smaller
 - drastic improvement possible
 - → talks: C.Kelly, D.Brömmel
- total: hopefully very small



- 1 loop matching and 2 loop running makes flat (pa)² dep
- preliminary result, $(pa)^2 \rightarrow 0$ extrapolation not attempted
- consistent with $RI \rightarrow \overline{MS}$ which has large systematic error

Summary

- conventional RI scheme uses exceptional momenta, thus has sizable non-perturbative contamination. Non-exceptional momenta are better.
- sRI scheme using non-exceptional momenta constructed.
- ${}_{\rm SRI} \rightarrow \overline{}_{\rm MS}$ matching calculated in 1 loop. The correction is already very small.
- Using NPR data with 2+1 f DWF, sRI scheme NPR plots are shown. Large reduction of the systematic is observed.
- Preliminary analysis on Z_m shown. It looks promising.