The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta

Yoshifumi Nakamura(NIC/DESY)

for the theta collaboration

S. Aoki(RBRC/Tsukuba), R. Horsley(Edinburgh), YN, D. Pleiter(NIC/DESY), P.E.L. Rakow(Liverpool), G. Schierholz(NIC/DESY), T. Izubuchi(Kanazawa/RBRC) and J. Zanotti(Edinburgh)

14-19 July, 2008, Lattice 2008

Electric Dipole Moment(EDM)

- Permanent EDM is a signature of T(Time reversal symmetry, =CP) violation
- Various candidates of CP violations
 - Electro Weak: CKM phase in quark mass matrix very small
 - New Physics: SUSY, left-right, multi Higgs
 - Vacuum angle θ

In QCD gauge invariant CP odd terms are allowed

$$S_{\theta} = i\theta \frac{1}{32\pi^2} \int d^4x F_{\mu\nu}(x) \tilde{F}_{\mu\nu}(x) = i\theta Q$$

Neutron EDM

Since 50 years ago

NEDM on lattice

89 Aoki-Gocksch	$N_f=0$ Wilson	Electric Field
04 Berruto et al.	$N_f=0$ DWF	F_3
05 Berruto et al.	$N_f = 2 \text{ DWF}$	F_3
06 CP-PACS	$N_f = 0$ DWF	F_3
06 CP-PACS	$N_f = 0$ DWF	Electric Field
06 QCDSF	$N_f = 0$ overlap	F_3
06 Blum, Izubuchi, Doi	$N_f = 2 \text{ DWF}$	Electric Field
08 CP-PACS	$N_f = 2$ Clover	Electric Field

- 2 methods(so far)
 - External Electric Field

Measure a spin splitting of energy

- Electric form factor $F_3 \qquad \iff$ in this talk Measure 3pt function with momenta p, and $p \rightarrow 0$
- Dynamical simulations are important NEDM is very sensitive to sea quark mass, $d_n = 0$ in the chiral limit
- Reweighting method have been used moisy (needs large statistics)
 In usual QCD simulations, θ=0
 In the real world θ is real
 But one can not do Full QCD HMC simulations with real θ

LQCD with imaginary $\boldsymbol{\theta}$

Motivation

• To calculate $d_N/ heta$

In lattice QCD, $\boldsymbol{\theta}$ is one of the input parameters

 d_N/θ from lattice $|d_n|$ from ex. $\rightarrow |\theta| < ?$

 \bullet To check feasibility of lattice QCD simulations at imaginary θ

Simulations with imaginary θ

There are 2 choices

• gluonic: $-\theta F\tilde{F}$

needed smearing/cooling

• fermionic: $m\theta\bar\psi\gamma_5\psi$

by using anomalous chiral WT relation

rotation by θ

$$m \to m \mathrm{e}^{i \frac{\theta}{N_f} \gamma_5}$$

Action with θ

We choose fermionic way

$$S_F + S_\theta = \bar{\psi} \left\{ D + \left[\cos(\theta/N_f) + i \, \sin(\theta/N_f) \, \gamma_5 \right] m \right\} \psi$$

$$\bar{m} = \cos(\theta/N_f) m$$

 $\bar{\theta} = \tan(\theta/N_f) N_f$

$$S_F = \bar{\psi} \left\{ D + \bar{m} + i \left(\bar{\theta} / N_f \right) \gamma_5 \, \bar{m} \right\} \psi$$

Lattice action

$$S_F = \bar{\psi} \left\{ D + \bar{m} + i \left(\theta_R / N_f \right) Z_m Z_P \gamma_5 \bar{m} \right\} \psi$$

 Z_m : the renormalization constant of the quark mass Z_P : the renormalization constant the pseudoscalar density θ_R : renormalized vacuum angle

$$\theta_R = \left(Z_m Z_P \right)^{-1} \bar{\theta}$$

 $\begin{array}{ll} \underline{\text{chiral fermion:}} & \text{nicer, definitely, extremely expensive} \\ Z_m Z_P = 1 \text{ and } \theta_R = \bar{\theta} \\ \underline{\text{clover fermion:}} & \text{relatively cheap} \\ Z_m Z_P = 1 \text{ and } \theta_R = \bar{\theta} \text{ in the continuum limit} \end{array}$

We employ $N_f=2$ flavors of dynamical clover fermions (chiral symmetry is violated)

$$\begin{split} a(D+\bar{m}) &\to D^{lat} = D^{Wilson} + T^{clover} \\ a\bar{m} &\to \frac{1}{2\kappa} - \frac{1}{2\kappa_c} \quad \text{VWI quark} \end{split}$$

$$D_{x,y}^{Wilson} = \delta_{x,y} - \kappa \sum_{\mu} \left\{ (1 - \gamma_{\mu}) U_{\mu}(x) \delta_{x+\mu,y} + (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(x - \mu) \delta_{x-\mu,y} \right\}$$

$$T_{x,y}^{clover} = \left\{ \frac{i}{2} c_{SW} \kappa \sigma_{\mu\nu} F_{\mu\nu}(x) + i(1 - \frac{\kappa}{\kappa_c}) \frac{\theta_R}{2} Z_m Z_P \gamma_5 \right\} \delta_{x,y}$$

In simulations with dynamical quarks, $\gamma_5 D \gamma_5 = D^{\dagger}$ is required The vacuum angle $\bar{\theta}$ is taken to be purely imaginary

$$\bar{\theta} = -i \, |\bar{\theta}| \equiv -i \, \bar{\theta}^{\, I}$$

 \downarrow The Boltzmann weight positive definite

Simulation

Lattice Size: $16^3 \times 32$ β : 2.1(Iwasaki) κ : 0.1357 κ_c : 0.138984 Lattice Spacing: a=0.1076(13) fm am_{π} : 0.6309(8)

same action as CP-PACS

$\overline{\theta}^{I}$	# of traj.	$\langle P \rangle$	$ au_{int}^P$	$\langle Q \rangle$	$\langle Q^2 \rangle - \langle Q \rangle^2$	$e^{-\Delta H}$
0.0	9000	0.598059(13)	3.24(68)	-0.06(31)	24.9(14)	1.0008(25)
0.2	9000	0.598045(11)	3.30(73)	-3.52(46)	24.1(15)	1.0029(35)
0.4	7000	0.598045(17)	3.02(41)	-7.35(36)	22.7(17)	1.0001(37)
1.0	6000	0.598078(16)	4.1(19)	-18.38(30)	21.7(15)	1.0001(14)
1.5	6000	0.598081(16)	2.56(61)	-27.84(37)	18.1(13)	0.9950(28)

Topological charge distribution

P(Q) is changed by $\bar{\theta}^{\,I}$

Effective value of θ

$$\theta^{\text{input}} = (1 - \frac{\kappa}{\kappa_c^{\theta}}) \bar{\theta}_R^{\ I} Z_m^{\theta} Z_P^{\theta}$$

ex. Input parameter $\theta^{\text{input}} = 0.00472572$ If $\kappa_c^{\theta} = 0.138984$ and $Z_m^{\theta} Z_P^{\theta} = 1 \rightarrow \bar{\theta}_R^I = 0.4$ • We could define renormalized θ by $Q(\theta)$ $^{-5}$ Ø −10 -15 ¥ $\theta_R^I \sim \theta^I \times 0.75$ -20 0.2 0.6 0.8 0 0.4 $\overline{\theta}^{I}$

 \bullet One could also check the effect of θ in other hadronic observable

$$m_{\pi}(\theta) = m_{\pi}(0) \cos(i\theta/N_f)$$
?

Brower et al. (2003), Aoki et al. (2007)

Nucleon form factors

The electromagnetic current between nucleon states

$$\langle p', s' | J_{\mu} | p, s \rangle = \bar{u}_{\theta}(\vec{p}', s') \mathcal{J}_{\mu} u_{\theta}(\vec{p}, s)$$

$$\begin{aligned} \mathcal{J}_{\mu} &= \gamma_{\mu} F_{1}^{\theta}(q^{2}) + \sigma_{\mu\nu} q_{\nu} \frac{F_{2}^{\theta}(q^{2})}{2m_{N}^{\theta}} \\ &+ i \, \theta \left[\left(\gamma q \, q_{\mu} - \gamma_{\mu} \, q^{2} \right) \gamma_{5} \, F_{A}^{\theta}(q^{2}) + \sigma_{\mu\nu} q_{\nu} \, \gamma_{5} \frac{F_{3}^{\theta}(q^{2})}{2m_{N}^{\theta}} \right] \\ q &= p' - p, \, q^{2} = -(E' - E)^{2} + (\vec{p}' - \vec{p})^{2}, \, \gamma p = i E \gamma_{4} + \vec{\gamma} \vec{p} \end{aligned}$$

Electric dipole moment

$$d_N^{\theta} = \lim_{q^2 \to 0} \frac{eF_3^{\theta}(q^2)}{2m_N^{\theta}}$$

The Dirac spinors are modified by a phase in the θ vacuum

$$u_{\theta}(\vec{p}, s) = e^{i\alpha(\theta)\gamma_5} u(\vec{p}, s)$$
$$\bar{u}_{\theta}(\vec{p}, s) = \bar{u}(\vec{p}, s) e^{i\alpha(\theta)\gamma_5}$$

Spinor relation is modified to

$$\sum_{s',s} u_{\theta}(\vec{p},s') \bar{u}_{\theta}(\vec{p},s) = e^{i\alpha(\theta)\gamma_5} \left(\frac{-i\gamma p + m_N^{\theta}}{2E_N^{\theta}}\right) e^{i\alpha(\theta)\gamma_5}$$

The lowest order in $\boldsymbol{\theta}$

$$\sum_{s',s} u_{\theta}(\vec{p},s') \bar{u}_{\theta}(\vec{p},s) = \frac{-i\gamma p + m_N(1 - 2\alpha'\bar{\theta}^I\gamma_5)}{2E_N}.$$

We are primarily interested in the electric dipole moment in the limit $\theta \to 0$, it is sufficient to consider the lowest order expansion only

 d_n for $\bar{\theta}^{\,I} \leq 0.4$ in this work

$$\operatorname{Tr} \left[G_{NN}^{\theta}(t;0)\Gamma_{4} \right] \simeq \frac{1}{2} |Z_{N}|^{2} e^{-m_{N}t},$$
$$\operatorname{Tr} \left[G_{NN}^{\theta}(t;0)\Gamma_{4}\gamma_{5} \right] \simeq -\alpha' \overline{\theta}^{I} \frac{1}{2} |Z_{N}|^{2} e^{-m_{N}t},$$

$$\Gamma_4 = (1 + \gamma_4)/2$$

 $\bar{\theta}^I = 0.4$

Nucleon form factors

$$\begin{split} R_{\mu}(t',t;\vec{p}',\vec{p}) &= \frac{G_{NJ_{\mu}N}^{\theta}(t',t;\vec{p}',\vec{p})}{\operatorname{Tr}\left[G_{NN}^{\theta}(t';\vec{p}')\Gamma_{4}\right]\operatorname{Tr}\left[G_{NN}^{\theta}(t';\vec{p}')\Gamma_{4}\right]\operatorname{Tr}\left[G_{NN}^{\theta}(t'-t;\vec{p})\Gamma_{4}\right]} \right\}^{1/2} \\ &\times \left\{\frac{\operatorname{Tr}\left[G_{NN}^{\theta}(t;\vec{p})\Gamma_{4}\right]\operatorname{Tr}\left[G_{NN}^{\theta}(t';\vec{p})\Gamma_{4}\right]\operatorname{Tr}\left[G_{NN}^{\theta}(t'-t;\vec{p}')\Gamma_{4}\right]}{\operatorname{Tr}\left[G_{NN}^{\theta}(t'-t;\vec{p}')\Gamma_{4}\right]}\right\}^{1/2} \\ &= \sqrt{\frac{E^{\theta'}E^{\theta}}{(E^{\theta'}+m_{N}^{\theta})\left(E^{\theta}+m_{N}^{\theta}\right)}}F(\Gamma,\mathcal{J}_{\mu}), \\ F(\Gamma,\mathcal{J}_{\mu}) &= \frac{1}{4}\operatorname{Tr}\Gamma\left[e^{i\alpha(\theta)\gamma_{5}}\frac{E^{\theta'}\gamma_{4}-i\vec{\gamma}\vec{p}'+m_{N}^{\theta}}{E^{\theta'}}e^{i\alpha(\theta)\gamma_{5}}\right] \\ &\quad \times \mathcal{J}_{\mu}\left[e^{i\alpha(\theta)\gamma_{5}}\frac{E^{\theta}\gamma_{4}-i\vec{\gamma}\vec{p}+m_{N}^{\theta}}{E^{\theta}}e^{i\alpha(\theta)\gamma_{5}}\right] \\ \mathcal{J}_{\mu} &= \gamma_{\mu}F_{1}^{\theta}(q^{2}) + \sigma_{\mu\nu}q_{\nu}\frac{F_{2}^{\theta}(q^{2})}{2m_{N}^{\theta}} \\ &\quad + i\theta\left[(\gamma q q_{\mu}-\gamma_{\mu}q^{2})\gamma_{5}F_{A}^{\theta}(q^{2}) + \sigma_{\mu\nu}q_{\nu}\gamma_{5}\frac{F_{3}^{\theta}(q^{2})}{2m_{N}^{\theta}}\right] \end{split}$$

momenta: quantized in units of $2\pi/L$

- conventional (periodic) boundary condition(BC)
 - $p = \frac{2\pi}{16} \sim 0.4$ is not small \rightarrow noisier & large extrap.
- twisted boundary condision(TBC) Bedaque (2004)

$$\psi(x_k + L) = e^{i \alpha_k} \psi(x_k), \quad k = 1, 2, 3.$$

the dispersion relation for the nucleon

$$E = \sqrt{m_N^2 + (\vec{p} + \vec{\alpha})^2}$$

choice of twist angles

$$\vec{\alpha} = \frac{2\pi}{L} (0, 0, 0)$$
$$\vec{\alpha} = \frac{2\pi}{L} (0.36, 0, 0)$$
$$\vec{\alpha} = \frac{2\pi}{L} (0.36, 0.36, 0)$$
$$\vec{\alpha} = \frac{2\pi}{L} (0.36, 0.36, 0.36)$$

Preliminary results

Fit using a dipole ansatz

$$F_3^{\theta}(q^2) = \frac{F_3^{\theta}(0)}{(1+q^2/M^2)^2}$$

The renormalization constant Z_V is needed

$$F_3^{\theta}(0) = \lim_{q^2 \to 0} \frac{F_3^{\theta}(q^2)}{F_1^p(q^2)}$$

 Z_V cancels

Anapole form factor $\bar{\theta}^{\ I} = 0.2$

$$\bar{\theta}^{I} = 0.4$$

$$d_N^{\theta} = \frac{\partial d_N^{\theta}}{\partial \bar{\theta}^I} \bar{\theta}^I + c \, \bar{\theta}^{I \, 3}$$

gives at $\bar{\theta}^I = 0$

$$\begin{split} \frac{\partial d_N^{\theta}}{\partial \bar{\theta}^I} &= 0.080(10)_{\text{stat}+\text{fit}}(?)_{\text{sys}} \ [e \times \text{fm}] \quad \text{Proton} \\ \frac{\partial d_N^{\theta}}{\partial \bar{\theta}^I} &= -0.049(5)_{\text{stat}+\text{fit}}(?)_{\text{sys}} \ [e \times \text{fm}] \quad \text{Neutron} \end{split}$$

 \Downarrow

 $|\theta| < 6 \times 10^{-12}$ preliminary

$$\bar{\theta}_s^{\ I} = 0.4$$
, $\bar{\theta}_v^{\ I} = 0.0$

Charge distribution and θ vacuum

$$\langle Q^n \rangle_c \equiv i^n \frac{\partial^n}{\partial \theta^n} \ln Z(\theta)$$

$$S = \frac{\langle Q^3 \rangle_c}{\langle Q^2 \rangle_c}$$

 $K = \frac{\langle Q^4 \rangle_c}{\langle Q^2 \rangle_c}$

Conclusions and **future** plans

- Have performed simulations of QCD with $N_f=2$ flavors of dynamical quarks at imaginary vacuum angle θ
- The use of partially twisted boundary conditions has allowed us to compute the relevant neutron form factor $F_3(q^2)$ with high precision over the entire range of momenta down to $(aq)^2 \approx 0.02$
 - \rightarrow greatly facilitated the extrapolation to $q^2=0$
- Successfully obtain signal disentangled from statistical noise
- Plan
 - Sea quark mass dependence (χ PT)
 - EDM is zero in the chiral limit
 - In this work m_π is very heavy $\sim 1~{
 m GeV}$
 - Volume dependence
 - In this work $V \sim (1.7 \ {\rm fm})^3 \rightarrow {\rm small}$ for baryon
 - Dependence of the boundary conditions

We used periodic BC for sea quark TBC for valence quark

- Gluonic operator instead of the pseudoscalar operator