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Abstract

We compare eigenvalue distributions of phase
quenched Lattice QCD and Random Matrix Theory
(RMT).

We calculated eigen-value distributions of quark
matrix on 8% X 4 |attice by N,= 2 KS fermions. We
performed fittings between these lattice data and
RMT at coupling 3= 5.30 and iso-vector chemical
potential ya = 0.0, 0.004773, 0.1 and 0.2 (weak
non-hermiticity) and then find good agreement.

Our data indicates that F_ decreases as the iso-
vector chimical potential increases.



1. Research situation at y#0

RMM LGT
SU(2) Fullt] O O
SU(3) Quench!“! O ®
SU(3) Phase Quench O This talk
SU(3) Full O X

[1] Osborn, Splittorfff & Verbarrschot (2005), Akemann & Bittner (2006)
[2] Akemann & Wettig (2004)

Finite baryon-number density in SU(3) Finite density lattice QCD

—— Introduces chemical potential u
quark matrix determinant positive, real for u=0
complex for u=0
numerical study becomes difficult ! _



2. Formulation

L attice calculation

Fermion : Kogut-Susskind (Staggered)

Quark matrix determinant is complex

—= one may perform Monte Carlo simulation
jl)l]'()e_ﬁsg

jl)l]é_ﬂsg
[DU |det A" 0 e
[DU |det A" e

Quenching measure (0) =

N, /4

Phase quenching measure (0), =

N=2 Phase quench, SU(3), 83 x 4 lattice, f=5.3,
ma=0.05

Calculated eigenvalues:
all eigenvalues (N- X N,=6144) in 980 configurations

the smallest 100 eigenvalues in 15,000 /10,000 / 5,000
configurations *



Random Matrix Mode| :G-Akemann and G.vemizzi, 2003
*G.Akemann, 2003

*J.Osborne, 2004

N=2 Phase quenched spectral density
In weak non-Hermiticity limit
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Bridge between LGT and RMM

@:za-VZ =7Z'/d

rescaled eigenvalue measured eigenvalue
which is used in RMM on the lattice

@:ma-VZ:@-ﬂ/d

rescaled mass given mass on the lattice

a” = @)4 F;V a: lattice spacing

d. mean level spacing

given chemical potential V- 1attice volume
on the lattice 2. chiral condensate

F .. pion decay const.



Mean level spacing d is very very important !

le A 1_Aimaencinnal Aar 2_.Aim innal enarinA?
o U I UIIIIUIIOIUIICH Ul 4™ UIIIIUIIOIUI 1al OIJGU IH
It seems that we should think of d as 1-dimensional spacing.

=0 Banks —Casher formula
’ 2= (y)=-"E0 - Z oL
|% Vd d

Measure the mean level spacing d
between neighbor eigenvalues.

ol X
u#0 for the smallest 7eigenvalues
J Yy
* Calculate the mean
°l e Project level spacing d on
o | eigenvalues y-axis
° on y-axis i




3. Comparison of RMM result
and lattice data

Our purpose again

Eigen-value distribution Spectral density of RMM
function of Lattice K &)
<:> p(Nf:2>(§) _ /O(NfO)(g){l_ ‘ 3(5 7 )‘ ]

p(x,y) K,(n.n)K,(£,5)
Jp@.y)dxdy=N

. We want to determine parameters
=3x8 x4=6144

iIn which the lattice data reappear.




B=5.3 pa=0.1 (T=198MeV u=79MeV)
“onfiguration traj.= 2000

n Configuration traj.= 20

83 x 4 |attice, NgF~2, 3=5.3, ma=0.09, pa=0.'!:ju ‘ o
D Calculate mean level-spacing d, and '
rescale lattice data by it. F 1 a=0.1

IIIIIIII

(15,000 configurations, ~ * '«

d=2775%x10" the smallest 7

eigenvalues)
(Hza)mrd

rescaled eigenvalue ~ measured eigenvalue ==
which is used in RMM on the lattice

The aerial view is

@ Obtain the rescaled mass n by d obtained from 980

configurations.
n=ma-n/d=57.6 These values are determined

uniquely.



@ Put nand choose a suitably in RMM

w Choose a in order to match those
distribution latitudes, peaks and plateaus T
on the real and imaginary axies.

¥ Then a =1.68 is obtained.

=53 na=0.1 (T=198MeV u=79MeV)
Configuration traj.= 2000

Im A

8.839
8.83
8.829
8,82
8.815
8,81
g.,005

]

LGT 8% x 4 lattice, N=2, B=5.3, RMM N=2, a=1.68, 1=57.6
ma=0.05, ya=0.10 ’ ’

E=za-nld 10



Ha=0.10 15000 configurations

_ —— RMM phase quench _ —— RMM phase quench
pr_Z(g) RMM quench pr—Z(Q) RMM quench
0.03! 0.04,
0.035:
0.025 0.03| e B
0.02} 0.025 Ju ==
0.015; 0.02:
0.01 0.015:
0.01!
0.005! 0.005
00 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Re[(] Im[(]

® Charts coincide without tuning of those normalizations.

® Because the phase effect is small, it is difficult to know
which of RMM graphs corresponds to LGT graph.

® Free parameter is a only.

11



Distribution of the first 3 eigenvalues in LGT

PNi=2(E) —— 1steigenvalue pPNf=2(()
0.03} 2"d eigenvalue 0.04

0.025 3rd eigenvalue 0.035
| 0.03 ol 1 T
0.02 0.025 JduF

0.015,
0.01
0.005}

0.02
0.015
0.01
0.005:

2 4 6 8 10 12 14

0
Re[(] Im[(]

0 25 5 75 10 125

Tuning of parameter a
p=2(C) PNf=2(C)

0.03! o= 1.58 0.04
| a=1.68 0035

0025 =178 0'03;' ﬁr_’_‘ﬂ ,_,F
002 =1 0.025 U=
0.015! | 0.02, |

- 0.015 |

[T 0.01}
0.005} S 0.005|

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Re[(] Im[g] 2



B=5.3 pa=0.0 (T=198MeV u=0MeV)
Configusation traj = 3010 HOT start

ta=0.00

d=2.284x10""
a’=(ua)’F*V =0.0
No free parameter !

-----

Spectral density of RMM e :
- 1 9y . _ :
p(Nf 0)(5):%Ldte2 tlo(fﬁ)lo(g \/Z) E=x+1y
PNf=2(C) 0.5,

04
03] 5000 configurations
0.2 histogram LGT full
| RMM full
01! RMM quench

0 25 5 75 10 125 15 17.5 20 Im[¢]
® This statistics are not so rich. The first three peaks of LGT full are

very well in agreement with the one of RMM full. 1



Distribution of the first 3 eigenvalues in LGT

PNF=2(C) 05

04 [
0.3
0.2 |

0.1

0

ANl

25 9

1st eigenvalue
2"d eigenvalue
3rd eigenvalue

s 50 IMIC

75 10 12.5 15 17.5 20



/Ja=0-004773 This aerial view is the almost same one
at ua=0.0. The close-up near the origin
d =2.661x10" has very narrow distribution width. -

15,000 configurations
pNi=2(C)
5" 1st peak y=1.635
15 | RMM Nf=2,
a=0.08, n=59.4
1 \ _
\ J histogram LGT phase quench
0.5 ;h 05 | RMM phase quench
RMM quench
0 01 02 03 04 05 0O 2 4 6 8 10 12 14
Re[(] Im[(]

® This statistics are not so poor. It seems that only the first peak of

LGT is in agreement with RMM. 15



Distribution of the first 3 eigenvalues in LGT

PNf=2(C) PN=2(C)
, st peak y=1.635 25/
1st eigenvalue 2
1.5 2" eigenvalue 15 | |
| 3" eigenvalue
1 \ 1!
0.5 | \k 0.5
Re[¢] Im[(]

Tuning of parameter a

PN=2(C)
1st peak y=1.635
a=0.07
2| a=0.08
a=0.09
0.5
0 04 05 0 2 4 6 8 10 12 14

0.5
Re[¢] Im[(]
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[JCt:O.ZO 10,000 configurations .,
d=4.341x10"

) " " Left aerial view is )
pNf=2(C) obtained from 580 PN
Q.02 configurations. 0.02

0.0175;— 0.0175
0.015§ _ 0.015
0.0125 RMM N=2, 65125
0.01 0=2.38, n=36.2 0.01
0.0075 | 0.0075
0.005 0.005
0.0025 0.0025

0 5 10 15 20 25 0
Re[(]

B=5.3 pa=0.2 (T=198MeV p=158MeV)

histogram LGT phase quench
RMM phase quench
RMM quench

25 5 7.5 10 12.5 15 17.5 20

Im[(]

® There is phase effect at ya=0.2. It seems that statistics are still

insufficient in order to know whether the phase quenched graph

17

of LGT corresponds to the same graph of RMM

Configuration traj.= 2000
3g T T T T T =
oL J
1-— -
3o —
k- |
2 -
X + 4
O 30 | | | | | bl
S 0.1 0 0.1 0.2
3 Re )
O ‘\“‘/” ¢
O
R
15



Distribution of the first 3 eigenvalues in LGT

pPNi=2(E) 1st eigenvalue
0.02 2"d eigenvalue
0.0175 3rd eigenvalue
0.015
0.0125
0.01 |
0.0075 |
0.005 | “|_
0.0025
PiEaN
0 S 10 15 20 25
Re[(]
Tuning of parameter a
Nf=2
502 ) a=2.28
0.0175 a=2.38

0.015
0.0125 |
0.01
0.0075 | |
0.005 | |
0.0025

o= 2.48

20 25

Re[d]

PN=2(C)
0.02
0.0175
0.015
0.0125
0.01
0.0075
0.005
0.0025

0

25 5 7.5 10125 1517.5 20

Im[(]

PNf=2(C)
0.02,
0.0175
0.015
0.0125
0.01
0.0075 |
0.005 |
0.0025

0 25 5 7.5 10125 1517.5 20

Im[(]
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4. Pion decay constant

alua=F |V

Ha it
0.0 confinement none
0.004773 (B<p.= 0.08

5.3197(9)) confinement
0.1 (B < B:.=5.314(1)) 1.68

confinement
0.2 (B> B:=5.298(2)) 2.38
deconfinement

® [ is from Kogut and Sinclear (2004).

'8 = 5.30
o PV
none
16.8

16.8

11.9

® |t seems that F on B;or in deconfinement phase is

smaller than F, in confinement phase.
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5. Summary

A)

We have the phase quenched configurations
that calculated on 83 x 4 lattice. To analyze
the distributions of the eigenvalues, we
compared the distributions with RMM
calculations.

In case of ya=0.00, we have the full QCD
configurations that are N=2, ma=0.05. There
IS no free parameter. The first three peaks of
LGT quench are very well in agreement with
the one of RMM quench.

In case of ya=0.004773, 0.1, 0.2, it is possible
to fit the RMM graph to the LGT one by tuning
only a parameter.

20



=\ \A/ i fla A~ vy ....J..-. ca~fC At
) vve CbllllldlCU tne variations oOi Iy dl

d
ua=0.004773, 0.1, 0.2, it seems that F_ at
ua=0.004773, 0. 1(conf|nement phase) is
larger than F1T at ya=0.2 (8 > ~ B, almost on
Bc or deconfinement phase).

F) In future work, we try to estimate of the
variations of F_ at ya=0.17 at which S is a
little smaller than S.

" W o Y .o
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0

. 1
Chiral condensate <wvy>= 7 oma) InZ

SU(3) N=2 m=0.05 84 lattice

=
o pa=0.1 phase quench =3
x na=0.1 reweighted
na=0.2 phase quench

i

]_ d’; 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I-

E —

-3 deconfinement

0.8 . .

[ 3 J

A 0.6 % —
confinement 4 -

L EEI J
= _

o

vy
LI I LI L L | | L I LI I LI

0.2F + pa=0.2 reweighted
na=0.25 phase quench
pa=0.25 reweighted
0 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I

5.2 5.25 1;3 ‘ 5.35 5.4

Bo=5.314(1)
Bo=5.298(2)

The bellow graph exhibits
both of no phase case and
re-weighted case.

No phase : <;'7”> are the
averages over 4000
trajectories each trajectories.

Re-weighted : detA is
calculated each 10
trajectories. <W> are the
averages over 4000
trajectories

These signs overlap mutually.

Phases of <@w> are factorized.
We can’t confirm the phase
effect.
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Polyakov line

0.25

1
<L>= ET’”(Usztm Uit in)

We attempt the similar consideration to Polyakov line.

SU(3) N=2 m=0.05 8’x4 lattice

I 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1
[ o pa=0.1 phase quench
L x pa=0.1 reweighted
na=0.2 phase quench

I_

|+ pa=0.2 reweighted e x|
pa=0.25 phase quench T i .
na=0.25 reweighted I TE i

[ $ "
_ 3 2 .
- confinement I -
[ deconfinement
I - ) ]
__ ) . - __
F §F = ]
i I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I-
52 5.25 3 5.35 54

Bc=5.314(1)

B.=5.298(2)

The effect of re-weighting
was not seen as well as the
case of Chiral condensate.

4

We want to examine the
effect of re-weighting with
more bigger pua.

At 3=5.2, CG doesn't
converge in the density
region beyond pa=2.8.

|

Does CG work well in the
high density region (almost

ua=1.2) ?
24



Phase Quenched

Chiral condensate

_ 1 0O
<Yy >=— InZ
V 0(2ma)

SUG) N=2 m=0.05 8'x4 lattice B=5.30

o S B AL N R E

0.8F ]

o [ ]

5=} - -

| 0.6 x 7

g I ]

c:)0.4_— X .

e

vV i >

0.2F * ]

oF_. A

I L I L I L
0O 02 04 06 08 1 12 14
ua

As Ua increases,
chiral symmetry is restore.

<L>=exp(——¢)

kov line

1
<L>:§TV(Utlt2Ut2t3" u )

Poly

*~itn-1tn

SU() N=2 m=0.05 8’x4 lattice B=5.30

0.25 T T T T ~ T "~ T " T
0.2F = -
o [ X _
20.15F -
o
2 1 x
S X
N 01F —
v
0.05¢ .-
0 T D T B R B T
0O 02 04 06 08 1 12 14

ua

As Ua increases,

confinement phase
— deconfinement phase
—= confinement phase (thf/?)



Chiral condensate

Ha
0.0
0.004773
0.1

0.2

7p0) _
1%

d

measured

(wy) = -

2.569 %103
2.661 %10
2.775 %103

4.341 x 103

T 1
_—m_

()
measured

0.7803
0.7681
0.7484

0.6146

(y)-d
2.005%x 103
2.044 x 103

2.077 x 103

2.668 X 10
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Lattice calculation

Formulation
QCD Lagrangian Baryon number operator
L=y(in, D" =m )+ FLES N = [dxyyy
N, : flavors

Partition function

1/ T

Z = [DUDy Dy exp|- jo dr [d’x(L+ pnyy,p)]
_ IDU(det AN oS S,: gauge action

Fermion matrix (Kogut-Susskind (Staggered))
1 N N U,e“q YU e”
Alx,y)=mé, , +=> ()" U x)6 ;. -U (S, .}
2 =1 Y o ) C
! \/ \D_
1 1 X1 +Xg+Xg yaU 5 —yaU+ 5 a
+§(_ ) 1e"U,(x) widy € () x,y+21}

a : lattice spacing
27



Re-weighting method

1/2

_ |DU [det 4

z9/2oe—ﬂ5g

_l 1/2 -BS,
= IDU (detA) Oe jDU‘detA‘m 612 5h5,

1/2

J-DU ‘detA‘ ‘H/QOe_ﬂS J-DU‘detA‘l/Z 19/2 -BSg

DU det A e ™ @det A" e T

<O ez9/2>

= <ei0/2>
0

0
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ua=0.00
Spectral density of RMM

(N,=2) (N,=0)
! ( ): ! ( ) 1- * *
oo [ K, (1.1 K, (2.2 )]
=u’F?V
guench density For c1<<1 0 K, (x)=~+7x/2xexp(-x)

P = 2\«5\ [ij e 'K(68)  eoxiy

42|¢|e42Re<5> s
WJ% T [t e 1, (647) 1, (£ 48)
e k2 [t (6) 1, (£ V)

x —0.0 V272

— O(x)x = Ldte‘%‘ ‘1 (5\[) (5 \[)

a— 0.0
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