Eigenvalue Distributions of Quark Matrix at Finite Isospin Chemical Potential

Presenter:
Yuji Sasai - Tsuyama National College of Technology
Co-authors:
Gernot Akemann, Atsushi Nakamura and Tetsuya Takaishi

July 15, 2008

Abstract

We compare eigenvalue distributions of phase quenched Lattice QCD and Random Matrix Theory (RMT).
We calculated eigen-value distributions of quark matrix on $8^{3} \times 4$ lattice by $N_{f}=2$ KS fermions. We performed fittings between these lattice data and RMT at coupling $\beta=5.30$ and iso-vector chemical potential $\mu \boldsymbol{a}=0.0,0.004773,0.1$ and 0.2 (weak non-hermiticity) and then find good agreement.
Our data indicates that F_{π} decreases as the isovector chimical potential increases.

1. Research situation at $\mu \neq 0$ RMM LGT

$\mathrm{SU}(2) \mathrm{Ful\mid l}{ }^{[1]}$

SU(3) Quench ${ }^{[2]}$
SU(3) Phase Quench

SU(3) Full

This talk
\times
[1] Osborn, Splittorfff \& Verbarrschot (2005), Akemann \& Bittner (2006)
[2] Akemann \& Wettig (2004)
Finite baryon-number density in $\operatorname{SU}(3)$ Finite density lattice QCD
\rightleftharpoons introduces chemical potential μ quark matrix determinant positive, real for $\mu=0$ complex for $\mu \neq 0$

2. Formulation Lattice calculation

Fermion : Kogut-Susskind (Staggered)
Quark matrix determinant is complex
\Longrightarrow one may perform Monte Carlo simulation
Quenching measure

$$
\langle O\rangle_{q}=\frac{\int D U O e^{-\beta S_{g}}}{\int D U e^{-\beta S_{g}}}
$$

Phase quenching measure $\langle O\rangle_{0}=\frac{\int D U|\operatorname{det} \Delta|^{V_{f} / 4} O e^{-\beta S_{g}}}{\int D U \mid \operatorname{det} \Delta^{N_{f} / 4} e^{-\beta S_{g}}}$
$N_{f}=2$ Phase quench, $S U(3), 8^{3} \times 4$ lattice, $\beta=5.3$, $m a=0.05$

Calculated eigenvalues: all eigenvalues $\left(N_{\mathrm{C}} \times N_{\mathrm{V}}=6144\right) \quad$ in 980 configurations the smallest 100 eigenvalues

Random Matrix Model

-G.Akemann and G.Vernizzi, 2003
-G.Akemann, 2003

- J.Osborne, 2004

$N_{f}=2$ Phase quenched spectral density

 in weak non-Hermiticity limit$$
\rho^{\left(N_{f}=2\right)}(\xi)=\rho^{\left(N_{f}=0\right)}(\xi)\left(1-\frac{\left|K_{s}\left(\xi, \eta^{*}\right)\right|^{2}}{K_{s}\left(\eta, \eta^{*}\right) K_{s}\left(\xi, \xi^{*}\right)}\right)
$$

where quenched density is given by

$$
\begin{aligned}
& \rho^{\left(N_{f}=0\right)}(\xi)=\frac{1}{4 \pi \alpha^{2}}|\xi|^{2} K_{0}\left(\frac{|\xi|^{2}}{4 \alpha^{2}}\right) \mathrm{e}^{-\frac{1}{4 \alpha^{2}} \operatorname{Re}\left(\xi^{2}\right)} K_{s}\left(\xi, \xi^{*}\right) \\
& K_{s}\left(\xi, \xi^{*}\right) \equiv \int_{0}^{1} d t e^{-2 \alpha^{2} t} I_{0}(\xi \sqrt{t}) I_{0}\left(\xi^{*} \sqrt{t}\right) \quad I_{0}(z)=J_{0}(i z)
\end{aligned}
$$

Bridge between LGT and RMM

Mean level spacing d is very very important!

Is d 1-dimensional or 2-dimensional spacing?
It seems that we should think of d as 1 -dimensional spacing. $\mu=0$ Banks -Casher formula

$$
\Sigma=\langle\bar{\psi} \psi\rangle=-\frac{\pi \rho(0)}{V}=-\frac{\pi}{V d} \propto \frac{1}{d}
$$

Measure the mean level spacing d between neighbor eigenvalues.
$\mu \neq 0 \quad$ for the smallest 7eigenvalues

Calculate the mean level spacing d on y-axis

3. Comparison of RMM result and lattice data

Our purpose again

Eigen-value distribution function of Lattice

$$
\begin{aligned}
& \rho(x, y) \\
& \int \rho(x, y) d x d y=N \\
& =3 \times 8^{3} \times 4=6144
\end{aligned}
$$

Spectral density of RMM

$$
\rho^{\left(N_{l}-2\right)}(\xi)=\rho^{\left(N_{t},-\right)}(\xi)\left(1-\frac{\left|K_{s}\left(\xi, \eta^{*}\right)\right|^{2}}{K_{s}\left(\eta, \eta^{*}\right) K_{s}\left(\xi, \xi^{*}\right)}\right)
$$

We want to determine parameters in which the lattice data reappear.
(1) Calculate mean level-spacing d, and rescale lattice data by it.
(15,000 configurations,

The aerial view is obtained from 980 configurations.

$$
\begin{array}{ll}
\eta=m a \cdot \pi / d=57.6 & \begin{array}{l}
\text { These values are determined } \\
\text { uniquely. }
\end{array}
\end{array}
$$

(3) Put η and choose α suitably in RMM
\star Choose α in order to match those distribution latitudes, peaks and plateaus on the real and imaginary axies.
\star Then $\alpha=1.68$ is obtained.

LGT $8^{4} \times 4$ lattice, $\boldsymbol{N}_{\mathrm{f}}=2, \beta=5.3$, ma=0.05, $\mu \boldsymbol{a}=0.10$

$$
\xi=z a \cdot \pi / d
$$

10

$\mu \boldsymbol{a}=0.10 \quad 15000$ configurations

- Charts coincide without tuning of those normalizations.
- Because the phase effect is small, it is difficult to know which of RMM graphs corresponds to LGT graph.
- Free parameter is α only.

Distribution of the first 3 eigenvalues in LGT

Tuning of parameter α

$\mu \boldsymbol{a}=0.00$

$$
\begin{gathered}
\quad d=2.284 \times 10^{-3} \\
\alpha^{2}=(\mu a)^{2} F_{\pi}^{2} V=0.0 \\
\text { No free parameter! } \\
\text { Spectral density of RMM }
\end{gathered}
$$

$$
\rho^{\left(N_{f}=0\right)}(\xi)=\frac{y}{2} \int_{0}^{1} d t e^{-2 \alpha^{\prime 2} t} I_{0}(\xi \sqrt{t}) I_{0}\left(\xi^{*} \sqrt{t}\right) \quad \xi=x+i y
$$

$\rho \mathrm{Nf}=2(\zeta) 0.5$

- This statistics are not so rich. The first three peaks of LGT full are very well in agreement with the one of RMM full.

Distribution of the first 3 eigenvalues in LGT

$\mu a=0.004773$ This aerial view is the almost same one at $\mu a=0.0$. The close-up near the origin $d=2.661 \times 10^{-3}$ has very narrow distribution width.

15,000 configurations
 $\operatorname{Re}[\zeta] \quad \operatorname{lm}[\zeta]$

- This statistics are not so poor. It seems that only the first peak of LGT is in agreement with RMM.

Distribution of the first 3 eigenvalues in LGT

Tuning of parameter α

$\mu \boldsymbol{a}=0.20$ 10,000 configurations

- There is phase effect at $\mu \boldsymbol{a}=0.2$. It seems that statistics are still insufficient in order to know whether the phase quenched graph of LGT corresponds to the same graph of RMM

Distribution of the first 3 eigenvalues in LGT

Tuning of parameter α

4. Pion decay constant F_{Π}

$$
\alpha / \mu a=F_{\pi} / \sqrt{V} \quad \beta=5.30
$$

$\mu \boldsymbol{a}$

0.0 confinement
$0.004773 \quad\left(\beta<\beta_{C}=\right.$ 5.3197(9)) confinement

$$
0.1\left(\beta<\beta_{C}=5.314(1)\right)
$$

$$
1.68
$$

$$
16.8
$$

confinement

$$
0.2\left(\beta>\beta_{\mathrm{C}}=5.298(2)\right) \quad 2.38
$$ deconfinement

- β_{C} is from Kogut and Sinclear (2004).
- It seems that $F_{\mathrm{\pi}}$ on β_{C} or in deconfinement phase is smaller than F_{π} in confinement phase.

5. Summary

A) We have the phase quenched configurations that calculated on $8^{3} \times 4$ lattice. To analyze the distributions of the eigenvalues, we compared the distributions with RMM calculations.
B) In case of $\mu \boldsymbol{a}=0.00$, we have the full QCD configurations that are $N_{\mathrm{f}}=2, \boldsymbol{m a}=0.05$. There is no free parameter. The first three peaks of LGT quench are very well in agreement with the one of RMM quench.
C) In case of $\mu \boldsymbol{a}=0.004773,0.1,0.2$, it is possible to fit the RMM graph to the LGT one by tuning only α parameter.
E) We estimated the variations of F_{π} at $\mu \boldsymbol{a}=0.004773,0.1,0.2$, it seems that F_{π} at $\mu \boldsymbol{a}=0.004773,0.1$ (confinement phase) is larger than F_{π} at $\mu \boldsymbol{a}=0.2\left(\beta>\sim \beta_{\mathrm{C}}\right.$, almost on β_{C} or deconfinement phase).
F) In future work, we try to estimate of the variations of F_{π} at $\mu a=0.17$ at which β is a little smaller than β_{C}.

Backup slides

Chiral condensate $\langle\bar{\psi} \psi\rangle=\frac{1}{V} \frac{\partial}{\partial(2 m a)} \ln Z$

The bellow graph exhibits both of no phase case and re-weighted case.
No phase: $\langle\bar{\psi} \psi\rangle$ are the averages over 4000 trajectories each trajectories.

Re-weighted : $\operatorname{det} \Delta$ is calculated each 10 trajectories. $\langle\bar{\psi} \psi\rangle$ are the averages over 4000 trajectories

These signs overlap mutually.
Phases of $\langle\bar{\psi} \psi\rangle$ are factorized. We can't confirm the phase effect.

$$
\text { Polyakov line } \quad<L>=\frac{1}{3} \operatorname{Tr}\left(U_{t 12} U_{12 \beta} \ldots U_{t n-1 t n}\right)
$$

We attempt the similar consideration to Polyakov line.

The effect of re-weighting was not seen as well as the case of Chiral condensate.

We want to examine the effect of re-weighting with more bigger $\mu \mathrm{a}$.

At $\beta=5.2$, CG doesn't converge in the density region beyond $\mu \mathrm{a}=2.8$.

Does CG work well in the high density region (almost $\mu \mathrm{a}=1.2$) ?

Phase Quenched

Chiral condensate

$$
\left\langle\bar{\psi} \psi>=\frac{1}{V} \frac{\partial}{\partial(2 m a)} \ln Z\right.
$$

As μa increases, chiral symmetry is restore.

$$
<L>=\exp \left(-\frac{1}{T} \varepsilon\right)
$$

Polyakov line

$$
<L>=\frac{1}{3} \operatorname{Tr}\left(U_{t 12} U_{1213} \ldots U_{t n-1 t n}\right)
$$

As μa increases, confinement phase
\Longrightarrow deconfinement phase
\Longrightarrow confinement phase (Why?)

Chiral condensate

$$
\langle\bar{\psi} \psi\rangle=-\frac{\pi \rho(0)}{V}=-\frac{\pi}{V d} \propto \frac{1}{d}
$$

$\mu \boldsymbol{a}$	$\underset{\text { measured }}{\boldsymbol{d}}$	$\langle\bar{\psi} \psi\rangle$ measured	$\langle\bar{\psi} \psi\rangle \cdot d$
0.0	2.569×10^{-3}	0.7803	2.005×10^{-3}
0.004773	2.661×10^{-3}	0.7681	2.044×10^{-3}
0.1	2.775×10^{-3}	0.7484	2.077×10^{-3}
0.2	4.341×10^{-3}	0.6146	2.668×10^{-3}

Lattice calculation

Formulation

QCD Lagrangian

$$
\begin{gathered}
L=\bar{\psi}\left(i \gamma_{\mu} D^{\mu}-m_{f}\right) \psi+\frac{1}{2} F_{\mu \nu}^{a} F_{a}^{\mu \nu} \quad \hat{N}=\int d^{3} x \bar{\psi} \gamma_{4} \psi \\
N_{f}: \text { flavors }
\end{gathered}
$$

Partition function

$$
\begin{aligned}
Z & =\int D U D \bar{\psi} D \psi \exp \left[-\int_{0}^{1 / T} d \tau \int d^{3} x\left(L+\mu \bar{\psi} \gamma_{4} \psi\right)\right] \\
& =\int D U(\operatorname{det} \Delta)^{N_{f} / 4} e^{-S_{g}} \quad S_{g}: \text { gauge action }
\end{aligned}
$$

Fermion matrix (Kogut-Susskind (Staggered))

$$
\begin{aligned}
\Delta(x, y)=m \delta_{x, y} & +\frac{1}{2} \sum_{i=1}^{3}(-1)^{x_{1}+\cdots+x_{i-1}}\left\{U_{i}(x) \delta_{x+\hat{i}, y}-U_{i}^{+}(y) \delta_{x, y+\hat{i}}\right\} \\
& +\frac{1}{2}(-1)^{x_{1}+x_{2}+x_{3}}\left\{\underline{e}^{\mu a} U_{4}(x) \delta_{x+\hat{4}, y}-e^{-\mu a} U_{4}^{+}(y) \delta_{x, y+\dot{4}}\right\}
\end{aligned}
$$

Re-weighting method

$$
\begin{aligned}
\langle O\rangle & =\frac{1}{Z} \int D U(\operatorname{det} \Delta)^{1 / 2} O e^{-\beta S_{g}}=\frac{\int D U|\operatorname{det} \Delta|^{1 / 2} e^{i \theta / 2} O e^{-\beta S_{g}}}{\int D U|\operatorname{det} \Delta|^{1 / 2} e^{i \theta / 2} e^{-\beta S_{g}}} \\
& =\frac{\int D U|\operatorname{det} \Delta|^{1 / 2} e^{i \theta / 2} O e^{-\beta S_{g}}}{\int D U|\operatorname{det} \Delta|^{1 / 2} e^{-\beta S_{g}}} / \frac{\int D U|\operatorname{det} \Delta|^{1 / 2} e^{i \theta / 2} e^{-\beta S_{g}}}{\int D U|\operatorname{det} \Delta|^{1 / 2} e^{-\beta S_{g}}} \\
& =\frac{\left\langle O e^{i \theta / 2}\right\rangle_{0}}{\left\langle e^{i \theta / 2}\right\rangle_{0}}
\end{aligned}
$$

$\mu \boldsymbol{a}=0.00$

Spectral density of RMM

$$
\begin{aligned}
& \rho^{\left(N_{f}=2\right)}(\xi)=\rho^{\left(N_{f}=0\right)}(\xi)\left(1-\frac{\left|K_{s}\left(\xi, \eta^{*}\right)\right|^{2}}{K_{s}\left(\eta, \eta^{*}\right) K_{s}\left(\xi, \xi^{*}\right)}\right) \\
& \alpha^{2}=\mu^{2} F_{\pi}^{2} V
\end{aligned}
$$

quench density \quad For $\alpha \ll 1.0 \quad K_{v}(x) \approx \sqrt{\pi / 2 x} \exp (-x)$

$$
\begin{aligned}
& \rho^{\left(N_{f}=0\right)}(\xi)=\frac{1}{4 \pi \alpha^{2}}|\xi|^{2} K_{0}\left(\frac{|\xi|^{2}}{4 \alpha^{2}}\right) \mathrm{e}^{-\frac{1}{4 \alpha^{2}} \mathrm{Re}\left(\xi^{2}\right)} K_{s}\left(\xi, \xi^{*}\right) \quad \xi=x+i y \\
& \approx \frac{1}{4 \pi \alpha^{2}}|\xi|^{2} \sqrt{\frac{\pi}{2|\xi|^{2} / 4 \alpha^{2}}} \mathrm{e}^{-\frac{1}{4 \alpha^{2}\left|\xi \xi^{2}\right|^{2}}} \mathrm{e}^{-\frac{1}{4 \alpha^{2}} \mathrm{Re}\left(\xi^{2}\right)} \int_{0}^{1} d t e^{-2 \alpha^{2} t} I_{0}(\xi \sqrt{t}) I_{0}\left(\xi^{*} \sqrt{t}\right) \\
&=\frac{1}{\sqrt{2 \pi} \alpha} \mathrm{e}^{-\frac{1}{2 \alpha^{2}} x^{2}} \times \frac{y}{2} \int_{0}^{1} d t e^{-2 \alpha^{2} t} I_{0}(\xi \sqrt{t}) I_{0}\left(\xi^{*} \sqrt{t}\right) \\
& \alpha \rightarrow 0.0 \\
& \underset{\alpha \rightarrow 0}{ } \delta(x) \times \frac{y}{2} \int_{0}^{1} d t e^{-2 \alpha^{2 / t} t} I_{0}(\xi \sqrt{t}) I_{0}\left(\xi^{*} \sqrt{t}\right)
\end{aligned}
$$

