Time: Tuesday, 5:00 Room: Chesapeake A

Eigenvalue Distributions of Quark Matrix at Finite Isospin Chemical Potential

Presenter:

Yuji Sasai — Tsuyama National College of Technology

Co-authors:

Gernot Akemann, Atsushi Nakamura and Tetsuya Takaishi

Abstract

We compare eigenvalue distributions of phase quenched Lattice QCD and Random Matrix Theory (RMT).

We calculated eigen-value distributions of quark matrix on $8^3 \times 4$ lattice by $N_f = 2$ KS fermions. We performed fittings between these lattice data and RMT at coupling $\beta = 5.30$ and iso-vector chemical potential $\mu a = 0.0, 0.004773, 0.1$ and 0.2 (weak non-hermiticity) and then find good agreement.

Our data indicates that F_{π} decreases as the isovector chimical potential increases.

1. Research situation at $\mu \neq 0$

	RMM	LGT
SU(2) Full ^[1]	0	0
SU(3) Quench ^[2]	0	0
SU(3) Phase Quench	0	This talk
SU(3) Full	0	X

[1] Osborn, Splittorfff & Verbarrschot (2005), Akemann & Bittner (2006)

[2] Akemann & Wettig (2004)

Finite baryon-number density in SU(3) Finite density lattice QCD

2. Formulation Lattice calculation

Fermion : Kogut-Susskind (Staggered) Quark matrix determinant is complex ——— one may perform Monte Carlo simulation $\left\langle O \right\rangle_q = \frac{\int DU \ O e^{-\beta S_g}}{\int DU e^{-\beta S_g}}$ Quenching measure Phase quenching measure $\langle O \rangle_0 = \frac{\int DU |\det \Delta|^{N_f/4} O e^{-\beta S_g}}{\int DU |\det \Delta|^{N_f/4} e^{-\beta S_g}}$ $N_{\rm f}$ =2 Phase quench, SU(3), 8³ × 4 lattice, β=5.3, ma = 0.05

Calculated eigenvalues:

all eigenvalues ($N_{\rm C} \times N_{\rm V}$ =6144) in 980 configurations

the smallest 100 eigenvalues

in 15,000 /10,000 / 5,000 configurations ⁴

Random Matrix Model

•G.Akemann and G.Vernizzi, 2003

•G.Akemann, 2003

•J.Osborne, 2004

*N*_f=2 Phase quenched spectral density in weak non-Hermiticity limit

$$\rho^{(N_f=2)}(\xi) = \rho^{(N_f=0)}(\xi) \left(1 - \frac{\left| K_s(\xi,\eta^*) \right|^2}{K_s(\eta,\eta^*) K_s(\xi,\xi^*)} \right)$$

where quenched density is given by

$$egin{aligned} &
ho^{(N_f=0)}(\xi) = rac{1}{4\pilpha^2} ig|^2 K_0 igg(rac{ig|\xiig|^2}{4lpha^2}igg) \mathrm{e}^{-rac{1}{4lpha^2}\mathrm{Re}(\xi^2)} K_sig(\xi,\xi^*ig). \ &K_sig(\xi,\xi^*ig) \equiv \int_0^1 dt \ e^{-2lpha^2 t} I_0ig(\xi\sqrt{t}ig) I_0ig(\xi^*\sqrt{t}ig) &I_0(z) = J_0(iz). \end{aligned}$$

Bridge between LGT and RMM

3. Comparison of RMM result and lattice data

Our purpose again

Eigen-value distribution
function of Lattice
 $\rho(x, y)$ Spectral density of RMM $\int \rho(x, y) dx dy = N$
 $= 3 \times 8^3 \times 4 = 6144$ $\int P^{(N_f=2)}(\xi) = P^{(N_f=0)}(\xi) \left(1 - \frac{|K_s(\xi, \eta^*)|^2}{K_s(\eta, \eta^*)K_s(\xi, \xi^*)}\right)$ We want to determine parameters
in which the lattice data reappear.

③ Put η and choose α suitably in RMM

- ☆ Choose α in order to match those distribution latitudes, peaks and plateaus on the real and imaginary axies.
- ☆ Then α =1.68 is obtained.

β=5.3 μa=0.1 (T=198MeV μ=79MeV) Configuration trai.= 2000

μλ

ι*a*=0

µ*a*=0.10

15000 configurations

- Charts coincide without tuning of those normalizations.
- Because the phase effect is small, it is difficult to know which of RMM graphs corresponds to LGT graph.
- Free parameter is α only.

Distribution of the first 3 eigenvalues in LGT

Tuning of parameter α

This statistics are not so rich. The first three peaks of LGT full are very well in agreement with the one of RMM full.

Distribution of the first 3 eigenvalues in LGT

 This statistics are not so poor. It seems that only the first peak of LGT is in agreement with RMM.

Distribution of the first 3 eigenvalues in LGT

insufficient in order to know whether the phase quenched graph 17 of LGT corresponds to the same graph of RMM

Distribution of the first 3 eigenvalues in LGT

Tuning of parameter α

4. Pion decay constant F_{π}					
$lpha/\mu lpha = F_{\pi}/\sqrt{V}$		$\beta = 5.30$			
	μα	$\pmb{\alpha}_{fit}$	$lpha_{ m fit}/\mu a$		
	0.0 confinement	none	none		
	0.004773 ($\beta < \beta_{\rm C}$ = 5.3197(9)) confinement	0.08	16.8		
	0.1 ($\beta < \beta_{\rm C}$ =5.314(1)) confinement	1.68	16.8		
	0.2 ($\beta > \beta_{\rm C}$ =5.298(2)) deconfinement	2.38	11.9		

- $\beta_{\rm C}$ is from Kogut and Sinclear (2004).
- It seems that F_{π} on $\beta_{\rm C}$ or in deconfinement phase is smaller than F_{π} in confinement phase.

5. Summary

- A) We have the phase quenched configurations that calculated on $8^3 \times 4$ lattice. To analyze the distributions of the eigenvalues, we compared the distributions with RMM calculations.
- B) In case of $\mu a = 0.00$, we have the full QCD configurations that are $N_{\rm f}$ =2, ma=0.05. There is no free parameter. The first three peaks of LGT quench are very well in agreement with the one of RMM quench.
- C) In case of $\mu a = 0.004773$, 0.1, 0.2, it is possible to fit the RMM graph to the LGT one by tuning only α parameter. 20

- E) We estimated the variations of F_{π} at μa =0.004773, 0.1, 0.2, it seems that F_{π} at μa =0.004773, 0.1(confinement phase) is larger than F_{π} at μa =0.2 ($\beta > \sim \beta_{\rm C}$, almost on $\beta_{\rm C}$ or deconfinement phase).
- F) In future work, we try to estimate of the variations of F_{π} at μa =0.17 at which β is a little smaller than $\beta_{\rm C}$.

Backup slides

The bellow graph exhibits both of no phase case and re-weighted case.

No phase : $\langle \overline{\psi} \psi \rangle$ are the averages over 4000 trajectories each trajectories.

Re-weighted : det Δ is calculated each 10 trajectories. $\langle \overline{\psi}\psi \rangle$ are the averages over 4000 trajectories

These signs overlap mutually.

Phases of $\langle \overline{\psi}\psi \rangle$ are factorized. We can't confirm the phase effect.

Polyakov line $< L >= \frac{1}{3} Tr(U_{t_1 t_2} U_{t_2 t_3} ... U_{t_{n-1} t_n})$

We attempt the similar consideration to Polyakov line.

The effect of re-weighting was not seen as well as the case of Chiral condensate.

We want to examine the effect of re-weighting with more bigger µa.

At β =5.2, CG doesn't converge in the density region beyond μ a=2.8.

Does CG work well in the high density region (almost µa=1.2) ?

As μa increases, chiral symmetry is restore.

$$< L >= \exp\left(-\frac{1}{T}\varepsilon\right)$$

Polyakov line $< L >= \frac{1}{3} Tr(U_{t1t2}U_{t2t3}...U_{tn-1tn})$ SU(3) N_f=2 m=0.05 8³×4 lattice β=5.30 0.25 0.2 \underbrace{I}_{1}

As μa increases,

confinement phase \implies deconfinement phase \implies confinement phase (Why?)

Chiral condensate

$$\langle \overline{\psi}\psi \rangle = -\frac{\pi\rho(0)}{V} = -\frac{\pi}{Vd} \propto \frac{1}{d}$$

μα	<i>d</i> measured	$\langle \bar{\psi}\psi angle$ measured	$ig\langle ar{\psi} \psi ig angle \cdot d$
0.0	2.569 × 10 ⁻³	0.7803	2.005 × 10 ⁻³
0.004773	2.661 × 10 ⁻³	0.7681	2.044 × 10 ⁻³
0.1	2.775 × 10 ⁻³	0.7484	2.077 × 10 ⁻³
0.2	4.341 × 10 ⁻³	0.6146	2.668 × 10 ⁻³

Lattice calculation Formulation

QCD Lagrangian

$$L = \overline{\psi} \left(i \gamma_{\mu} D^{\mu} - m_{f} \right) \psi + \frac{1}{2} F^{a}_{\mu\nu} F^{\mu\nu}_{a}$$

$$N_{c}: \text{flavors}$$

Baryon number operator

$$\hat{N} = \int d^3x \,\overline{\psi} \,\gamma_4 \psi$$

Partition function

 $Z = \int DUD\overline{\psi} D\psi \exp[-\int_{0}^{1/T} d\tau \int d^{3}x (L + \mu \overline{\psi} \gamma_{4} \psi)]$ $= \int DU (\det \Delta)^{N_{f}/4} e^{-S_{g}} \qquad S_{g}: \text{gauge action}$

Fermion matrix (Kogut-Susskind (Staggered)) $\Delta(x, y) = m \delta_{x, y} + \frac{1}{2} \sum_{i=1}^{3} (-1)^{x_1 + \dots + x_{i-1}} \{ U_i(x) \delta_{x+\hat{i}, y} - U_i^+(y) \delta_{x, y+\hat{i}} \}$ $+ \frac{1}{2} (-1)^{x_1 + x_2 + x_3} \{ \underline{e}^{\mu a} U_4(x) \delta_{x+\hat{4}, y} - \underline{e}^{-\mu a} U_4^+(y) \delta_{x, y+\hat{4}} \}$

Re-weighting method

$$\begin{split} \left\langle O \right\rangle &= \frac{1}{Z} \int DU \left(\det \Delta \right)^{1/2} Oe^{-\beta S_g} = \frac{\int DU \left| \det \Delta \right|^{1/2} e^{i\theta/2} Oe^{-\beta S_g}}{\int DU \left| \det \Delta \right|^{1/2} e^{i\theta/2} e^{-\beta S_g}} \\ &= \frac{\int DU \left| \det \Delta \right|^{1/2} e^{i\theta/2} Oe^{-\beta S_g}}{\int DU \left| \det \Delta \right|^{1/2} e^{-\beta S_g}} / \frac{\int DU \left| \det \Delta \right|^{1/2} e^{i\theta/2} e^{-\beta S_g}}{\int DU \left| \det \Delta \right|^{1/2} e^{-\beta S_g}} \\ &= \frac{\left\langle O \ e^{i\theta/2} \right\rangle_0}{\left\langle e^{i\theta/2} \right\rangle_0} \end{split}$$

μ**a**=0.00

Spectral density of RMM

$$\rho^{(N_f=2)}(\xi) = \rho^{(N_f=0)}(\xi) \left(1 - \frac{\left| K_s(\xi,\eta^*) \right|^2}{K_s(\eta,\eta^*) K_s(\xi,\xi^*)} \right)$$
$$\alpha^2 = \mu^2 F_{\pi}^2 V$$

 $\begin{aligned} \text{quench density} & \text{For } \alpha <<1.0 \quad K_{\nu}(x) \approx \sqrt{\pi/2x} \exp(-x) \\ \rho^{(N_{f}=0)}(\xi) &= \frac{1}{4\pi\alpha^{2}} |\xi|^{2} K_{0} \left(\frac{|\xi|^{2}}{4\alpha^{2}} \right) e^{-\frac{1}{4\alpha^{2}} \operatorname{Re}(\xi^{2})} K_{s}(\xi,\xi^{*}) \qquad \xi = x + iy \\ &\approx \frac{1}{4\pi\alpha^{2}} |\xi|^{2} \sqrt{\frac{\pi}{2|\xi|^{2}/4\alpha^{2}}} e^{-\frac{1}{4\alpha^{2}}|\xi|^{2}} e^{-\frac{1}{4\alpha^{2}} \operatorname{Re}(\xi^{2})} \int_{0}^{1} dt \ e^{-2\alpha^{2}t} I_{0}(\xi\sqrt{t}) I_{0}(\xi^{*}\sqrt{t}) \\ &= \frac{1}{\sqrt{2\pi\alpha}} e^{-\frac{1}{2\alpha^{2}}x^{2}} \times \frac{y}{2} \int_{0}^{1} dt \ e^{-2\alpha^{2}t} I_{0}(\xi\sqrt{t}) I_{0}(\xi^{*}\sqrt{t}) \\ &\xrightarrow{} 0.0 \quad \delta(x) \times \frac{y}{2} \int_{0}^{1} dt \ e^{-2\alpha^{2}t} I_{0}(\xi\sqrt{t}) I_{0}(\xi^{*}\sqrt{t}) \end{aligned}$