Non-perturbative renormalization of $N_f = 2 + 1 \ \rm QCD$ with Schrödinger functional scheme

Yusuke Taniguchi for PACS-CS collaboration

Our ultimate purpose

• Determine the fundamental parameter of $N_f=2+1$ QCD

$$\mathcal{L} = -rac{1}{4g^2}F^a_{\mu
u}F^a_{\mu
u}+\overline{\psi}_{m i}\left(\gamma_\mu D_\mu+m m_{m i}
ight)\psi_{m i}$$

- Strong coupling g: target of this talk
 - Low energy input r_0 is measured by PACS-CS (Namekawa)
- Quark masses m_i
 - Bare quark masses are measured by PACS-CS (Kadoh, Kuramashi, Ukita)
 - NP renormalization factor will be needed.
- We adopt input of low energy experimental values.
 - Comparison with high energy input (estimation of systematic error)
 - Need calculation from weak to strong coupling region.

Plan of this project

- Evaluate $\alpha_S(M_Z)$ by an input of low energy observable (r_0) .
- NP renormalization factor of quark mass.
 - as a by product of $lpha_S(M_Z)$ in this talk (inhomogeneous BC at $t=0,\ T$)

Method

Non-perturbative renormalization with Schrödinger functional

- Finite volume of L^4
- Appropriate boundary condition
- Renormalization scale $\sim 1/L$
- Good compatibility with lattice.
- Covers from low to high energy region.

Schrödinger functional scheme

(Lüscher et al, Alpha)

• Dirichlet boundary condition at t = 0, T.

$$egin{aligned} U_k(x)|_{x_0=0} &= \exp\left(aC_k
ight), \quad C_k = rac{i}{L} egin{pmatrix} \phi_1 & & \ & \phi_2 & \ & & \phi_3 \end{pmatrix} \end{aligned}$$

- Unique global minimum at background field B_{μ} .
- Mass gap in fermionic mode (quark mass can be set to zero).
- Renormalized coupling

$$S_0=rac{1}{g_0^2}F_{\mu
u}^2 \Rightarrow \Gamma_0[B_\mu]=\Gamma[B_\mu]=rac{1}{g_R^2(L)}k[B_\mu]$$

Mass renormalization factor

$$Z_m(L) = rac{ig\langle P(t=L/2)\cdot \mathcal{O}_{ ext{boundary}}ig
angle_{ ext{lattice}}}{ig\langle P(t=L/2)\cdot \mathcal{O}_{ ext{boundary}}ig
angle_{ ext{tree}}}$$

Step Scaling Function

• Renormalization group flow $g(L) \rightarrow g(2L)$ when one changes the renormalization scale $L \rightarrow 2L$

• Follow the renormalization group flow in discretized way.

Step scaling function

- The point is:
- To take continuum limit for every step of RG flow.
 - L
 ightarrow 2L, g(L,a)
 ightarrow g(2L,a)

• Obtain the RG flow $g(L) \rightarrow g(2L)$ in the continuum.

Numerical setup

- Iwasaki gauge action $\beta = 2.1 \sim 6.2$
 - tree level boundary improvement
 - inhomogeneous DBC, $heta=\pi/5$
- Wilson fermion with clover term.
 - non-perturbative c_{SW}
 - one loop boundary improvement
- RHMC/HMC algorithm for 3rd/two flavour(s)
- CPS++ code
- Machines
 - PC cluster kaede at Tsukuba: (~180 PU)
 - SR11000 at Tokyo: (~64 PU)
 - PACS-CS: (256 PU) × 1 month
 - RSCC at Riken (128 PU)
 - T2K at Tsukuba: (2560 cores) × 10 days
 - T2K at Tokyo: (128 cores)

Current status

• Take the continuum limit by three box sizes.

L/a	4	6	8
2L/a	8	12	16

• Tuning of β and κ is finished for fixed physical box size.

\overline{g}^2	1.001	1.249	1.524	1.840	2.129	2.632	3.418
4^4	110K	170K	230K	170K	210K	320K	100K
8^4	40K	40K	86K	134K	50K	74K	308K
6^4	153K	150K	50K	170K	110K	144K	120K
12^4	42K	51K	42K	35K	28K	21K	38K
8^4	98K	86K	122K	98K	74K	122K	122K
16^4	16.2K	18K	116K	3.2K	4K	5.1K	3.2K

- Now performing simulation for larger box of 2L
 - $L/a = 8 \rightarrow L/a = 16$: Now going on

Distribution of data

• Distribution of $\partial S/\partial\eta \propto 1/\overline{g}^2$ (12⁴ at strong coupling)

SSF (preliminary)

• $\sigma(u) = \overline{g}^2(2L)|_{u = \overline{g}^2(L)}$

SSF for coupling

• $\sigma(u)/u$

• $\sigma(u)/u$

• Polynomial fit

$$\sigma(u) = u + s_0 u^2 + s_1 u^3 + s_2 u^4 + f_3 u^5 + f_4 u^6 \ \chi^2/{
m dof} \sim 0.8$$

Introduction of scale

• r_0 at vanishing PCAC mass $(m_u = m_d = m_s \rightarrow 0)$

L^4	β	\overline{g}^2	$m_{ m AWT}$
4^4	1.90	4.695(23)	-0.00039(28)
4^4	2.05	3.808(17)	0.00010(31)
6^4	2.05	4.763(70)	-0.00810(20)

$$egin{aligned} &\Lambda=\mu\left(b_0\overline{g}
ight)^{-rac{b_1}{2b_0^2}}\exp\left(-rac{1}{2b_0\overline{g}}
ight)\exp\left(-\int_0^{\overline{g}}dg\left(rac{1}{eta}+rac{1}{b_0g^3}-rac{b_1}{b_0^2g}
ight)
ight)\ &\Lambda_{\overline{ ext{MS}}}=2.612\Lambda_{ ext{SF}} \end{aligned}$$

SSF of Z_m (preliminary)

• Scaling behaviour is not good for L/a = 4.

- May be able to take the continuum limit by two data points.
- PT improvement may not work for 4^4 but may be for 6^4 .

Conclusion

- Calculation for the running coupling is going on
- Scaling behaviour seems to be good.
- Scaling behaviour of quark mass SSF is not so good.
 - We may need perturbative improvement.

Future work

- Take the continuum limit
- Take data for L/a = 16
 - Much expectation on T2K machine!
- Adopt appropriate setup for Z_m and repeat the calculation
 - Homogeneous BC, heta=0.5

Distribution of data

• $(16^4 \text{ at strong coupling})$

Scaling of SSF

• For one loop improved gauge boundary term (condition B)

