IDS Proton Driver to Drive a Muon Collider

J. Scott Berg Brookhaven National Laboratory Muon Collider Design Workshop 09 December 2008

IDS Proton Driver Specifications

- Proton driver power: 4 MW
- Proton driver repetition rate: 50 Hz
- Proton driver energy: around 10 GeV
- 3 proton bunches in train
 - $\square 1.7 \times 10^{13}$ protons per bunch at 10 GeV
- Bunch length: 1–3 ns
- \circ Train length at least 200 μ s

Muon Production vs. Energy

- Recent work to optimize target geometry (Ding, Kirk, Berg)
 - Vary jet radius, beam angle, crossing angle
 - Maximize muons production
- Variation with energy stronger than thought

Mercury Jet Geometry

Muon Production vs. Energy

Proton Energy

- Performance relatively flat for 6–15 GeV protons
 - Performance declines above that
 - Performance declines very rapidly below that
- Lower energy: tough to get short bunches
 - Space charge prevents rotation to short
 - More current early in accelerating cycle
- Machine cost at higher energy

Mon Collider

Repetition Rate

- Tough to get rep rate from proton driver
 - Easier at lower energy
- Muon machine
 - Beam loading with low rep rate
 - Average power consumption with high repract
 - Energy stored in cavities wasted
- 50 Hz was compromise

- Performance flat below 1 ns
- ○7% loss at 3 ns
- Achieving short bunches easier with
 - □ High rep rate
 - High energy
 - More bunches accelerated

Proton Bunches in Train

- Proton driver accelerates several bunches together
- Reduction in charge per bunch
- Must hit target in rapid succession
- All muon bunches accelerate to same energy
- Replace energy extracted from cavities
 - Power at input coupler limited
- Result: train length at least 200 μs

Bunches in Train

- More bunches gives less beam loading
- Must store all bunches in storage ring
 - Circumference of storage ring

Comparing to Muon Collider

- Muon collider wants significantly lower average rep rate
 - Neutrino factory effectively proposing 150 Hz!
- Low emittance lets you up this rep rate
 - □ A factor of 10 is probably challenging...
- O How to bridge this gap?

Muon Collider Higher Energy

- Advantages:
 - □ Reduce space charge issues
 - Easier to get short bunches
 - □ Power with low rep rate
- Disadvantages
 - □ Target performance hit
 - Muon beam loading/collective effects
 - □ Machine cost

Leutrino Factor

Conclusions

- Gap to bridge between NF and MC
- Get a little from everyone
 - Squeeze as much current into PD as we can
 - ♦ Easy to say…
 - Multiple-beamline systems? Duplication
 - Higher energy PD
 - Maximize cooling for more rep rate
 - ♦ Easy to say…

