

Phenomenological approaches to N* extractions (OVERVIEW)

S. Krewald

Forschungszentrum Jülich, Uni Bonn, Germany

M.Döring, J. Haidenbauer, C. Hanhart, U.-G. Meißner, D. Rönchen

Huang Fei, K. Nakayama

H. Haberzettl

Contents

Motivation: complete experiments From partial wave analysis to dynamics Examples

Outlook

Motivation: complete experiments

Sandorfi et al., J.Phys.G., 2010 R. Workman et al.(GWU, MAINZ, DUBNA) arXiv, 2011

Motivation: complete experiments

Sandorfi et al., 2010

Do our methods work well enough?

One channel, two channels,..

$$\begin{split} \psi &= exp(i\vec{k}\cdot\vec{r}) + f(\theta)\frac{exp(ikr)}{r} \\ f(\theta) &= \frac{1}{k}\sum_{l}T_{l}(k)(2l+1)P_{l}(cos(\theta)) \\ T_{l}(k) &= exp(i\delta_{l}(k))sin(\delta_{l}(k)) \\ T_{l}(k) &= \frac{1}{k}(exp(2i\delta_{l}(k)) - 1) \\ S_{l}(k) &= exp(2i\delta_{l}(k)) \\ S_{l}(k) &= \frac{1+itan(\delta_{l}(k))}{1-itan(\delta_{l}(k))} \\ \end{split}$$

S-Matrix: Unitary $S^{\dagger}S = I$

S-Matrix: Analytic S = S(k), complex k

Poles of S-Matrix: Resonances!

L.Tiator et al., PRC82(2010) from real axis into complex plane

S.Ceci et al., (2011) complex branch point, P11(1710) NSTAR 2011, Newport News, 17-20 May 2

Unitarity and dispersion relations

Unitarity and analyticity summarized by dispersion relations:

 $T(s,t) = T_{\infty} + \frac{1}{\pi} P \int ds' \frac{ImT(s,t)}{s-s'}$

Bridge between model independence and theory. Bethe-Salpeter equation for $a + b \rightarrow c + d$:

 $< p_c, p_d | T | p_a, p_b > = < p_c, p_d | V | p_a, p_b > + \int d^4 p_m \int d^4 p_n$ $< p_c, p_d | V | p_m, p_n > G(p_m, p_n) < p_m, p_n | V | p_a, p_b >$ $C(m, m) = \frac{1}{2}$

 $G(p_m, p_n) = \frac{1}{\sqrt{s_{ab}} - E(p_m, p_n)}.$

MATCH:

 $T(s,t) = \langle p_c, p_d | T | p_a, p_b \rangle$

Effective field theory I

- Chiral perturbation theory
- (+) Lagrangians respect chiral symmetry.
- (+) Expansion in momentum transfer, pion mass.
- (+) Systematic truncation scheme.
- (-) Unitarity only perturbative.
- (-) Limited to low energy.

Effective field theory II

- Unitarized chiral perturbation theory(U χ PT)
- (-) Systematic truncation scheme relaxed.
- (+) Unitary! Dynamical generation of resonances.
- (-) So far only S and P waves. Data analysis?
- U.-G. Meißner, E. Oset, J.A. Oller, M.Döring

Example: A. Gasparyan, M. Lutz, 2010.

Phenomenological theories I

- Dynamical coupled channel approaches
- (+) Theory based on effective Lagrangians(meson exchange).
- (+) Unitarity and analyticity respected.
- (-) Lagrangians relax chiral symmetry of Lagrangians.
- (+) All partial waves correlated(heavy mesons).
- (+) Dynamical generation of resonances and s-channel resonances.
- (-) Large technical effort.

Dubna-Mainz-Taipei, EBAC, Jülich-Bonn-Athens-GWU, Nijmegen

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Juelich-Bonn-Athens-GWU

Data upper: Candlin 1983, NPB 226 (1983), lower: GWU/SAID, PRC74 (2006)

pion- photoproduction

Athens, 2011, preliminary. Data from ELSA, MAMI

Phenomenological theories II

- K-matrix approaches
- (+) Theory based on effective Lagrangians(meson exchange).
- (+) Unitarity respected.
- (-) Dispersive corrections due to intermediate states neglected or in on-shell approximation or from SAID. Effects included in resonance parameters.
- (-) Correlation between partial waves relaxed.
- (-) No dynamical generation of resonances.
- (+) Flexible analysis tool.

BONN-GATCHINA, GIESSEN, GRONINGEN, GWU-SAID, JLAB, MAID

Kaon-Lambda photoproduction

Giessen, 2005. C = CLAS, S = SAPHIR

Kaon-Lambda photoproduction

Bonn Gatchina, 2010.

new CLAS data.

Single pion electroproduction

JLAB, I.G. Aznauryan, V. Mokeev, 2009.

CLAS data. Comparison with MAID.

Summary

Complete experiments allow amplitude analysis. Principles of analysis: Analyticity and Unitarity Analysis of several reactions \rightarrow coupled channels! Next step: resonce analysis! \rightarrow Toru Sato.

Analyticity and Unitarity

Analyticity and Unitarity

Pole and Non-Pole T-Matrix

$$T = T^P + T^{NP}$$

$$T = \frac{a_{-1}}{Z - Z_0} + a_0 + O(Z - Z_0)$$
$$a_{-1} = \frac{\Gamma_d \Gamma_d^{(\dagger)}}{1 - \frac{\partial}{\partial Z} \Sigma}$$
$$a_0 = T^{NP} + a_0^P$$
$$a_0^P = \frac{a_{-1}}{\Gamma_d \Gamma_d^{(\dagger)}} *$$
$$* \left(\frac{\partial}{\partial Z} (\Gamma_d \Gamma_d^{(\dagger)}) + \frac{a_{-1}}{2} \frac{\partial^2}{\partial Z^2} \Sigma\right)$$

Poles and background P₃₃

Vicinity of Pole:

 $T(Z) \sim \frac{a_{-1}}{Z - Z_0} + T^{NP}(Z)$

 $T(Z) \sim \frac{a_{-1}}{Z - Z_0} + a_0$

Second Riemann sheet: P₃₃

 T^{NP}

 $T^P + T^{NP}$

Poles and background D₃₃

Vicinity of Pole:

$$T(Z) \sim \frac{a_{-1}}{Z - Z_0} + T^{NP}(Z)$$

 $T(Z) \sim \frac{a_{-1}}{Z - Z_0} + a_0$

Amplitudes for charge exchange

 r_{x} r_{y} r_{z} r_{z

=>Fei Huang

Poles and residues I

	$\operatorname{Re} Z_0$	-2 lm Z ₀	R	θ [deg]
	[MeV]	[MeV]	[MeV]	[0]
$N^*(1520) D_{13}$	1505	95	32	-18
Arndt06	1515	113	38	-5
Hohler93	1510	120	32	-8
Cutkosky79	1510 ± 5	114 ±10	35 ±2	-12±5
$\Delta(1232) P_{33}$	1218	90	47	-37
Arndt06	1211	99	52	-47
Hohler93	1209	100	50	-48
Cutkosky79	1210 ±1	100 ±2	53 ±2	-47±1
$\Delta^*(1700) D_{33}$	1637	236	16	-38
Arndt06	1632	253	18	-40
Hohler93	1651	159	10	
Cutkosky79	1675 ± 25	220 ±40		2011, 200 + 250 May 2011 - p.26/30

Poles and residues II

	$\operatorname{Re} Z_0$	-2 lm Z_0	R	θ [deg]
	[MeV]	[MeV]	[MeV]	[0]
$N^*(1535) S_{11}$	1519	129	31	-3
Arndt06	1502	95	16	-16
Hohler93	1487			
Cutkosky79	1510 ± 50	260 ±80	120 ±40	+15±45
$N^*(1650) S_{11}$	1669	136	54	-44
Arndt06	1648	80	14	-69
Hohler93	1670	163	39	-37
Cutkosky79	1640 ± 20	150 ±30	60 ±10	-75±25
$N^*(1440) P_{11}$	1387	147	48	-64
Arndt06	1359	162	38	-98
Hohler93	1385	164	40	
Cutkosky79	1375 ±30	180 ±40	$52{\pm}5$ instar 2	2011, New periode + 35 ay 2011 - p.27/30

Poles and residues III

	$\operatorname{Re} Z_0$	-2 lm Z ₀	R	θ [deg]
	[MeV]	[MeV]	[MeV]	[⁰]
$\Delta^*(1620) S_{31}$	1593	72	12	-108
Arndt06	1595	135	15	-92
Hohler93	1608	116	19	-95
Cutkosky79	1600 ± 15	120 ±20	15 ±2	-110±20
$\Delta^*(1910) P_{31}$	1840	221	45	-153
Arndt06	1771	479	38	+172
Hohler93	1874	283	19	
Cutkosky79	1880 ±30	200 ±40	20 ±4	-90±30
$N^*(1720) P_{13}$	1663	212	14	-82
Arndt06	1666	355	25	-94
Hohler93	1686	187	15	
Cutkosky79	1680 ±30	120 ±40	$8 \pm 12_{msta}$	R 2011, N. 60 Hows 30 May 2011 - p.28

Background

	T^{NP}	a_0^{P}	Ratio
$N^*(1440) P_{11}$	15.3 - 7.60i	-10.9 + 7.92i	0.26
$\Delta^*(1620) S_{31}$	9.01 - 6.37i	-1.21 + 0.24i	0.9
$\Delta^*(1910) P_{31}$	4.58 - 2.76i	-0.78 + 0.24	0.9
$N^*(1720) P_{13}$	1.76 - 0.10i	0.45 - 0.56i	1.3
$N^*(1520) D_{13}$	-4.62 - 0.56i	3.03 + 1.23i	0.4
$\Delta(1232) P_{33}$	-16.7 - 3.57i	17.1 + 10.6i	0.4
$\Delta^*(1700) D_{33}$	0.80 - 0.52i	0.40 + 0.11i	1.3

The high energy limit: Regge theory schungszentrum Jülich In der Helmholtz-Gemeinschaft

 $A(s,t) \rightarrow \frac{1+exp(-i\pi\alpha)}{2sin(\pi\alpha)}\phi(t)s^{\alpha}$ $\alpha(t) = \alpha(0) + \alpha't; \alpha(0) = 0.55; \alpha' = 0.86GeV^{-2}$ Regge trajectory: $l = \alpha(t = M^2)$ Phenomenology: $\phi(t) = \beta_0 exp(bt)$ Analytical structure:

$$\phi(t) = \frac{\Phi(t)}{\Gamma(\alpha)}$$

Euler products:

$$sin(\pi\alpha) = \alpha * (1 - 1\alpha)(1 + 1\alpha) * \dots$$
$$\frac{1}{\Gamma(\alpha)} = \alpha exp(\gamma\alpha) * (1 + \frac{\alpha}{1})exp(-\frac{\alpha}{1}) * \dots$$
rescale:

 $\beta_0 exp(bt) \rightarrow exp((\gamma - a)\alpha)exp(-\frac{\alpha}{2}...$ All unphysical singularities manifestly cancelled.