

RESULTS FROM POLARIZED EXPERIMENTS FROM LEGS AND GRAAL

Annalisa D'ANGELO

University of Rome "Tor Vergata" and INFN Rome Tor Vergata

Outline

- Introduction: missing resonances and hadronic degrees of freedom
- The Legs and Graal Experimental set-ups.
- Results for Σ beam polarization asymmetries at Graal:

$$\begin{cases} \vec{\gamma} + n \to \pi^0 + n \\ \vec{\gamma} + n \to \pi^- + p \\ \vec{\gamma} + N \to \omega + N \end{cases}$$

- Results for O_x and O_y double polarization asymmetries for $k^+\Lambda$ photoproduction on the proton at Graal.
- Results on E and G double polarization asymmetries at Legs: $\begin{cases} \vec{\gamma} + \vec{H}D \rightarrow \pi^0 p \\ \vec{\gamma} + \vec{H}D \rightarrow \pi^+ n \end{cases}$
- Conclusions

QCD-inspired Constituent Quark Models

- Chiral symmetry breaking of the QCD Lagrangian generates Constituent Q with effective masses confirmed by LQCD and DSE calculations.
- •Asymmetry of the baryon wave function is guaranteed by color, but color degrees of freedom are integrated out and play no dynamical role.
- States classified by isospin, parity and spin within each oscillator band.

predictions

results

Annalisa]

ized ex

3

QCD-inspired Constituent Quark Models

- Chiral symmetry breaking of the QCD Lagrangian generates Constituent Q with effective masses confirmed by LQCD and DSE calculations.
- •Asymmetry of the baryon wave function is guaranteed by color, but color degrees of freedom are integrated out and play no dynamical role.
- States classified by isospin, parity and spin within each oscillator band.
- only lowest few in each band seen (in πN) with $4 \bigstar$ or $3 \bigstar$ status
- $g(\pi N)$ couplings predicted to decrease rapidly with mass in each oscillator band
- higher levels predicted to have larger couplings to $K\Lambda$, $K\Sigma$, $\pi\pi N$, ...

QCD-inspired di- Quark Models

- 2 quarks in nucleon assumed to be quasibound in a color isotriplet; diquark-quark is a net color isosinglet.
- all possible internal di-quark excitations ⇔ full spectrum of CQM
- internal di-quark excitations are frozen out (spin 0; isospin 0) \Leftrightarrow large reduction in the number of degrees of freedom \Leftrightarrow predicts less N* states than seen in π N

	N*	Status	$SU(6) \otimes U(3)$	Parity	Δ*	Status	$SU(6) \otimes U(3)$	Parity
Ī	P ₁₃ (938)	****	(56, 0+)	+	$P_{33}(1232)$	****	(56,0+)	+
Ì	S ₁₁ (1535)	****	$(70, 1^{-})$	-	S ₃₁ (1620)	****	$(70, 1^{-})$	-
	$S_{11}(1650)$	****	$(70, 1^{-})$	-	$D_{13}(1700)$	***	$(70, 1^{-})$	-
	$D_{13}(1520)$	****	$(70, 1^{-})$	-				
	$D_{13}(1700)$	***	$(70, 1^{-})$	-				
	$D_{15}(1675)$	****	$(70, 1^{-})$	-				
	$P_{11}(1520)$	****	$(56,0^+)$	+				
					$P_{31}(1875)$	****	$(56, 2^+)$	+
	$P_{11}(1710)$	***	$(70,0^+)$	+	$P_{31}(1835)$		$(70,0^+)$	+
	$P_{11}(1880)$		$(70, 2^+)$	+				
	$P_{11}(1975)$		$(20, 1^+)$	+				
					$P_{33}(1600)$	***	$(56,0^+)$	+
	$P_{13}(1720)$	****	$(56, 2^+)$	+	$P_{33}(1920)$	***	$(56, 2^+)$	+
	$P_{13}(1870)$	*	$(70,0^+)$	+				
	<i>P</i> ₁₃ (1910)		$(70, 2^+)$	+	$P_{33}(1985)$		$(70, 2^+)$	+
	$P_{13}(1950)$		$(70, 2^+)$	+				
	$P_{13}(2030)$		$(20, 1^+)$	+				
	$F_{15}(1680)$	****	$(56, 2^+)$	+	$F_{35}(1905)$	****	$(56, 2^+)$	+
	$F_{15}(2000)$	**	$(70, 2^+)$	+	$F_{35}(2000)$	**	$(70, 2^+)$	+
	$F_{15}(1995)$		$(70, 2^+)$	+				
	$F_{17}(1990)$	**	$(70, 2^+)$	+	$F_{37}(1950)$	****	(56, 2+)	+

the challenge: \Leftrightarrow unravel the N* spectrum

Experimental Requirements

- ☐ Tagged and polarized photon beam
- ☐ Large acceptance detector
- H and D polarized targets

Both Legs and Graal experiment were constructed to meet all above requirements

in the energy ranges:

$$E_{\gamma} = (180 - 450) \text{MeV}$$
 and $E_{\gamma} = (500 - 1500) \text{MeV}$

Polarized photon beams: Compton backscattering

- •Hiys \rightarrow below π threshold
- ·Legs $\rightarrow \Delta_{33}(1232)$ resonance region

•Graal \rightarrow E $_{\gamma}$ = .6-1.5 GeV / W=1.4-1.9 GeV Region of the second and third baryon resonances η , K, ω , thresholds

•Leps \rightarrow E $_{\gamma}$ = 1.5-2.5 GeV $\eta' \phi$ thresholds

Polarized photon beams: Compton backscattering and Bremsstrahlung

LEGS beam polarization

GRAAL beam polarization

The Graal detector: Lagranye

Large Acceptance Graal Apparatus for Nuclear y Experiments

Σ measurements at Graal on proton and deuteron targets

$$\bigcirc \quad \vec{\gamma} + p \rightarrow \pi^0 + p \qquad \bullet \quad \vec{\gamma} + p(+n) \rightarrow \pi^0 + p(+n)$$

Very nice agreement between free and quasi-free results on the proton

Σ measurements at GRAAL deuteron target

$$\overrightarrow{\gamma} + n(+p) \rightarrow \pi^0 + n + (p)$$

We may assume that results from quasi-free neutrons may represent the free neutron response → final state interactions and re-scattering are negligible)

Σ for π^0 photoproduction on qfn Multipole extraction in MAID2007

Σ results on $\vec{\gamma} + n (+p) \rightarrow \pi^- + p (+p)$ at GRAAL

Multipole modifications due to Σ results on $\vec{\gamma} + n \ (+p) \rightarrow \pi^- + p \ (+p)$ at GRAAL

$\vec{\gamma} + p \rightarrow \omega + p$: Differential Cross-Section

Oh,Titov,Lee PRC63 (2001) 025201

Low *t* diffractive behavior:

Vector Dominance Model (1960), J.J.Sakurai

- → Pomeron exchange
- $\rightarrow \pi^0/\eta$ exchange

t-channel

Eγ=(a) 1.23GeV

- (b) 1.45GeV
- (c) 1.68GeV
- (d) 1.92GeV
- (e) 2.80GeV
- (f) 4.70 GeV

Large t behavior : s- and u-channel contributions \rightarrow intermediate resonant states (N*).

pseudo-scalar meson exchange

Pomeron exchange

...

direct and crossed nucleon terms

.....

N* excitation

Σ results on $\vec{\gamma} + p \rightarrow \omega + p$ at GRAAL:

$$\omega \to \pi^0 \gamma$$
 and $\omega \to \pi^+ \pi^- \pi^0$

O. Zhao s and u-channel including $P_{13}(1720)$ PRC63(2001)025203

Bonn-Gatchina dominant $P_{13}(1720)$ Eur. Phys.J.A 25(2005)427

Giessen model PRC71(2005)055206

Oh, Titov and Lee PRC66 (2002)015204

M. Paris PRC79 (2009) 025208

•
$$\omega \rightarrow \pi^0 \gamma$$

$$\bullet \quad \omega \to \pi^0 \gamma$$

$$\bullet \quad \omega \to \pi^+ \pi^- \pi^0$$

$$\Sigma$$
 results on $\vec{\gamma} + p \rightarrow \omega + p$ at GRAAL:

$$\omega \to \pi^0 \gamma$$
 and $\omega \to \pi^+ \pi^- \pi^0$

• Graal
$$\omega \to \pi^0 \gamma$$

Graal
$$\omega \rightarrow \pi^+ \pi^- \pi^0$$

$$\circ$$
 Bonn $\omega \to \pi^0 \gamma$

$$_{\sqcap}$$
 PRL96(06) $\omega
ightharpoonup \pi^{+}\pi^{-}\pi^{0}$

Zhao model

s and u-channel
including P₁₃(1720)

s and u-channel no P₁₃(1720)

Σ results on $\vec{\gamma} + p \rightarrow \omega + p$ and $\vec{\gamma} + p (+n) \rightarrow \omega + p (+n)$ at GRAAL

Zhao model
_____s and u-channel
including P₁₃(1720)

- $\omega \rightarrow \pi^0 \gamma$ free-proton
- $\omega \to \pi^0 \gamma$ A Quasi-free-proton

18

Σ results on $\vec{\gamma} + n (+p) \rightarrow \omega + n (+p)$ at GRAAL

____ Zhao model

 $\omega \to \pi^0 \gamma$ $\Delta \text{ quasi-free- neutron}$

$\vec{\gamma} + p \rightarrow k^+ + \Lambda$: Total Cross-Section

Cross section data show a structure at W=1900 MeV.

Coupled-channel analysis finds that $S_{11}(1650)$, $P_{11}(1710)$ and $P_{13}(1720)$ have the most significant decay widths in the $k+\Lambda$ channel.

Isobar model requires the inclusion of a "missing" $D_{13}(1895)$ resonance to reproduce the cross section data.

– – – – Regge model calculation

...... KAON-Maid without D₁₃(1895)

KAON-Maid with D_{13} (1895)

— · — · - Saclay dynamical coupled channel

 S_{11} (1800) and P_{13} (1900) also seem to play a role

Polarization observables in

$$\vec{\gamma} + p \rightarrow k^+ + \vec{\Lambda}$$

Weak Λ decay is self-analyzing

	Photon bean	Target			Recoil			
					000 - 700 - 7000 - 7000 - 7000 - 7000 - 7	<i>x'</i>	<i>y</i> '	z '
			X	У	Z	Amp Camp Camp Camp Camp Camp Camp Camp Ca		
	unpolarized	σ_0	2 168 168 168 168 168 166	$egin{array}{cccccccccccccccccccccccccccccccccccc$	the land and had been land as		$oldsymbol{P}$	
	linearly P _γ	Σ	H	- P	-G	O_x ,	-T	O_z ,
	circular P _γ	THE VIEW VIEW VIEW VIEW VIEW VIEW VIEW VIE	F		- E	-C _x ,		C_z ,

PA in: $\vec{\gamma} + p \rightarrow k^+ + \vec{\Lambda}$

at Graal

A.Lleres et al., EPJ A 31, 79-93 (2007)

$$W(\cos \theta_p) = \frac{1}{2} \left(1 + \alpha |\vec{P}_{\Lambda}| \cos \theta_p \right)$$

$$P_{\Lambda} = \frac{2}{\alpha} \frac{N_{(\cos \theta_p > 0)} - N_{(\cos \theta_p < 0)}}{N_{(\cos \theta_p > 0)} + N_{(\cos \theta_p < 0)}}$$

$$\alpha = 0.642 \pm 0.013$$

From Σ and P measurements:

· Saclay Model:

$$S_{11}(1700) P_{13}(1800) D_{13}(1850)$$

· Ghent Isobar Model:

$$D_{13}(1900)$$

· Reggeized Model:

$$P_{13}(1900) D_{13}(1900)$$

· Bonn Coupled Channel Model:

$$D_{13}(1875)$$

Double Polarization Observables in K+Λ Photoproduction

A.Lleres et al., EPJ A 39, 149-161 (2009)

$$\frac{2N_{+}^{x'}}{N_{+}^{x'} + N_{-}^{x'}} = \left(1 + \alpha \frac{2P_{\gamma}O_{x}}{\pi} \cos \theta_{p}^{x'}\right)$$

$$\frac{2N_{+}^{z'}}{N_{+}^{z'} + N_{-}^{z'}} = \left(1 + \alpha \frac{2P_{\gamma}O_{z}}{\pi} \cos \theta_{p}^{z'}\right)$$

T in K⁺Λ Photoproduction

A.Lleres et al., EPJ A 39, 149-161 (2009)

$$\frac{2N_{+}^{y'}}{N_{+}^{y'} + N_{-}^{y'}} = \left(1 + \frac{2P_{\gamma}\Sigma}{\pi}\right) \left(\frac{1 + \alpha \frac{P\pi + 2P_{\gamma}T}{\pi + 2P_{\gamma}\Sigma} \cos\theta_{p}^{y'}}{1 + \alpha P \cos\theta_{p}^{y'}}\right)$$

From O_x , O_z and T results:

• Ghent Isobar RPR Model:

$$S_{11}(1650)$$
 $P_{11}(1710)$ $P_{13}(1720)$

$$P_{13}(1900)$$
 $D_{13}(1900)$

• Bonn Gatchina Model:

$$S_{11}(1535)S_{11}(1650)P_{13}(1720)P_{11}(1840)$$

$$P_{13}(1900)$$

LEGS Spin ASYmmetry Array (SASY)

Polarized targets: frozen spin HD target at LEGS

Polarized targets: frozen spin HD target at LEGS

Very clean signal/background separation

	TARGET			
PHOTON BEAM				
		×	У	z
unpolarized	$\sigma_{\scriptscriptstyle 0}$		Т	
linearly P,	Σ	I	-P	-G
circular P _y		F		-E

Longitudinal and Transverse Polarizations: > 60%

Relaxation time: > 1 year

Polarization procedure ≈ 3 months

Data taking: ≈ months

Very complicated target transfer technology.

 π^{θ} photoproduction at LEGS: longitudinally polarized photons on longitudinally polarized target : $\hat{E} = E \times \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_0}$

Extraction of observable G linearly polarized photons on longitudinally polarized targets

$$d\sigma = d\sigma_o(HD) + P_{\gamma}^L \cdot \left[\hat{\Sigma}(HD) + \frac{1}{\sqrt{2}} P_D^T \cdot T_{20}^L(D) \right] \cdot \cos 2\phi$$

$$+ P_{\gamma}^L \cdot \left[P_H \cdot \hat{G}(H) + P_D^V \cdot \hat{G}(D) \right] \cdot \sin 2\phi$$

$$- P_{\gamma}^C \cdot \left[P_H \cdot \hat{E}(H) + P_D^V \cdot \hat{E}(D) \right] + \frac{1}{\sqrt{2}} P_D^T \cdot T_{20}^0(D)$$

$$\uparrow_{L} + \overrightarrow{HD} \rightarrow 0$$

G asymmetry from π^+ and π^0 photoproduction on the proton at LEGS

$$\hat{G} = G \times \frac{d\sigma}{d\Omega_0}$$

Surprise: opposite sign and one order of magnitude larger than expected.

Under investigation.

D-wave component under $P_{33}(1232)$ larger than expected.

Conclusions

- Σ asymmetry for π^0 and π^- production on quasi-free neutrons provided new challenging constraints on $P_{11}(1700)$ and $P_{13}(1720)$ properties.
- Σ asymmetry for ω photoproduction on the nucleon is a benchmark prediction for most existing models sensitive to $P_{13}(1720)$ resonance.
- Double polarization observables in $k^+\Lambda$ photoproduction are mostly consistent with Bonn-Gatchina CC-PWA predictions the role of the "missing" D_{13} (1900) is still uncertain.
- First results on G double polarization observable at LEGS suggest a strong D-wave component in the Δ resonance.
- The next step is performing complete experiments.

Backup slides

Hadron Models: connection between constituent and current quarks

Current-quarks of perturbative QCD evolve into constituent quarks at low momentum ______ the constituent quark mass arises from low momentum gluons attaching them selves to current quarks.

Hadron Models: connection between constituent and current quarks

This effect is a dynamical chiral symmetry breaking (DCSB): a non-perturbative QCD effect that occurs also at the chiral limit generates mass from nothing

Hadron Models: connection between constituent and current quarks

The interaction that describes color-singlet mesons also generates axial-vector isotriplet quark-quark correlations with <u>significant attraction</u>:

$$m[ud]_0 = 0.74 - 0.82 \text{ GeV}$$

 $m[ud]_1 = m[uu]_1 = m[dd]_1 = 0.95 - 1.02 \text{ GeV}$ di-Quarks

P33(1232)

 E_{γ} (MeV)

From the Experiment to Theory

Experiment cross section, spin observables

 $\sigma, d\sigma/d\Omega, \Sigma, P, T$

(beam-target) E,F,G,H,

(beam-recoil) C_x, C_z, O_x, O_z ,

(target-recoil) L_x, L_z, T_x, T_z

Amplitude analysis

→multipole amplitudes

→phase shifts

Reaction Theory
dynamical frameworks

Theory LQCD, quark models, QCD sum rules,

Coupled channels: resonance parameter extraction

(by Eugene Pasyuk)

From the Experiment to Theory

Idealized path to search for N^* , Δ^* states via meson photo-production:

(1) determine the production amplitude from experiment

search for resonant structure: Argand circles, phase motion speed plots, etc.

Experiment cross section, spin observables

 σ ,d σ /d Ω ,Σ,P,T (beam-target) **E,F,G,H,** (beam-recoil) **C**_x,**C**_z,**O**_x,**O**_z, (target-recoil) **L**_x,**L**_z, **T**_x,**T**_z,

components

determine resonant γN* and decay couplings; contact with LQCD, DSE, Hadron models

(A. Sandorfi et al.)

<u>Theory</u> LQCD, quark models, QCD sum rules, Coupled channels: resonance parameter extraction

(by Eugene Pasyuk)

Reaction Theory dynamical frameworks

From the Experiment to Theory

Idealized path to search for N^* , Δ^* states via meson photo-production:

(1) determine the production amplitude from experiment

search for resonant structure: Argand circles, phase motion speed plots, etc.

Never been done after 50 years of experiments

(2) separate resonance and background components

determine resonant γN* and decay couplings; contact with LQCD, DSE, Hadron models

(A. Sandorfi et al.)

Without exp Amplitudes models have conjectured resonances and adjusted couplings to compare with limited data