Extraction of Resonance Parameter

T. Sato

Osaka U.

・ロト ・回 ト ・ヨト ・ヨト

Introduction

Characterize Resonances:

- Excitation spectrum Baryon : $J^{P,T}, M, \Gamma$
- Coupling constant : g_{α}, g_{β} , Branching ratio, electromagnetic form factor

・ロト ・聞ト ・ヨト ・ヨト

Э

Partial wave amplitude (PWA) \rightarrow Resonance parameters

GW-VPI,Bonn-Gatchina,Jlab-Yerevan,MAID,CMB/Pitt-ANL,Zagreb,Giessen,KENT Julich-Georgia, DMT,KVI,EBAC

- Breit-Wigner formula and pole of S-matrix
- Extraction of resonance parameters
- Simple exercise for extracting resonance parameter from ideal PWA
- Understanding resonance parameters

(4月) イヨト イヨト

Breit-Wigner formula and pole of S-matrix

イロト イポト イヨト イヨト

Breit-Wigner Formula

Resonance : $d\delta/dE$ has sharp maximum (elastic scattering)

Breit-Wigner formula

$$T = \frac{e^{2i\delta_b}\Gamma_{BW}/2}{M_{BW} - E - i\Gamma_{BW}/2} + B$$

- resonance mass M_{BW} , width Γ_{BW}
- $\Gamma_{BW}, M_{BW}, B, \delta_b$ are E-independent constants

Extension for Multi-channel : Generalized BW formula (Davies Baranger, McVoy)

$$T_{\beta,\alpha} = \frac{\gamma_{BW,\beta}\gamma_{BW,\alpha}}{M_{BW} - E - i\Gamma_{BW}/2} + B_{\alpha,\beta}$$

• Require unitarity assuming E-independent parameters

$$\gamma_{BW,\alpha} = e^{i\delta_{\alpha}}\sqrt{\Gamma_{BW,\alpha}/2}$$

$$\Gamma_{BW,lpha}$$
 : partial width, $\Gamma_{BW} = \sum_{lpha} \Gamma_{BW,lpha}$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Resonance : pole of S-matrix on unphysical sheet

elastic scattering amplitude near pole position (Laurant expansion)

$$T = \frac{R}{M_P - E - i\Gamma_P/2} + B(E)$$

• Resonance mass M_P and width Γ_P .

$$M_P = M_{BW}, \Gamma_P = \Gamma_{BW}$$

- If B(E) = B is a good approximation $R \rightarrow e^{2i\delta_B}\Gamma_{BW}/2$
- multi-channel case:

 $R
ightarrow \gamma_{lpha} \gamma_{eta}$, multi-Riemann sheets structure

coupling constant, form factor from residue of amplitude at pole

$$\gamma_{\rm em} = <\psi_{\rm Res}|j_{\rm em}|\psi_{\rm Gr}>$$

 Resonance 'wave function' : 'Eigen state' of Hamiltonian with non-hermite outgoing boundary condition.(Siegert, Dalitz)

$$\partial \psi_{Res} / \partial r_{\beta} - i p_{\beta} \psi_{Res} |_{\infty} = 0$$

• γ_{α} need not be real

$$|\psi_{Res}> = |'bound'> + |'scattering'>$$

well defined resonance parameters can be a starting point to contact with hadron models.

Extraction of resonance parameters

イロト イヨト イヨト イヨト

Mass and Width of P_{11} resonance from PDG

BW parameters in practice

$$T = \frac{R(E)}{M_{BW} - E - i\Gamma(E)/2} + B(E)$$

• energy dependent
$$B(E), \Gamma(E)$$

 $\Gamma(E) = (p/p_0)^{2l+1}\Gamma_{BW}$

- K-matrix approach: invent recipe to match BW form
- $M_P < M_{BW}, \Gamma_P < \Gamma_{BW}$ (Lichtenberg, Manley)

$$M_P \sim M_{BW} - \Gamma_{BW}/2(\alpha/(1+\alpha^2)), \alpha = \Gamma'/2$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Pole and residue are automatically obtained from PWA of K-matrix(on-shell), dynamical(full off-shell dynamics) by analytic continuation of the amplitude on unphysical sheet

• K-matrix: use appropriate 'on-shell' momentum (Bonn-Gatchina, VPI, Giessen)

for un-stable particle final state: need to take care of 3-body intermediate state.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Simple exercise

・ロン ・回 と ・ ヨ と ・ モ と

æ

Stability of resonance parameters extracted from PWA

- Input: $T(E_i)$ from $\pi N \pi N$ amplitude of VPI
- Output: T(E) calculate pole and residue without physics input

Calculate T(E) from known $T(E_i)i = 1, ...N$ (continued fraction)

$$T(E) = \frac{T(E_1)}{1+} \frac{a_1(E-E_1)}{1+} \frac{a_2(E-E_2)}{1+} \dots \quad a_1 = \frac{T(E_1)/T(E_2)-1}{E_2-E_1}, \dots$$

(Schlessinger)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Output:

Input	$M_P - i\Gamma_P/2(\text{MeV})$	Residue(MeV)	
E-dep [1210-1500] 59pt	1362 -89i	4.9 -44i	
E-dep [1300-1500] 41pt	1362 -90i	4.6 -45i	
E-ind [1217-1500] 17pt	1366 -128i	10 -68i	
E-ind [1289-1500] 13pt	1347 -93i	-11 -52i	

표 🛌 표

	$M_P - i\Gamma_P/2(MeV)$	Residue(MeV)	
E-dep [1200-1500] 59pt	1362 -89i	4.9 -44i	
Bonn-Gatchina	1377 -85i	5.7 -47i	
EBAC	1357 -76i/ 1364 -83i	37 -110i/66 -99i	
VPI/GW	1359 -82i/1388 -83i	38 -98i/ 86 -46i	
Juelich	1387 -71i/1387 -74i	48 -64i/	

- Obtained pole position is more stable than residue. In practice, PWA is obtained within certain accuracy. Resonance parameters may not be well determined from PWA such as E-ind PWA alone.
- Theoretical input (Tree diagram+ background, K-matrix, Dispersion relation, dynamical approach) is needed in extracting resonance parameters.

イロト イポト イラト イラト

Residue of the Pole gives coupling $constant(D_{13}(1520))$

$$T_{res} = rac{\gamma_{eta}\gamma_{lpha}}{M_P - E - i\Gamma_P/2}$$

B_{α}	πN	ηN	$\pi\Delta$	σN	ρN		Δ	Λ.
EDAC	650/	0.02	22	4	1		A _{3/2}	$A_{1/2}$
EBAC	05%	0.02	33	4	1	FBAC	$125 \pm 25i$	-42 + 8i
Manlev02	50	Ο	20	Ο	21	EDITE	125 251	42 01
Wantey 52	35	0	20	0	21	Bonn-Gatchina	130 + 14i	-30+8i
Vrana00	63	0	26	1	9	Bonn outening	100 11	
Vianauu	05		20	1	9	$(Cev^{-1/2})$	(10 ³)	

 $B_{\alpha} = |\gamma_{\alpha}|^2 / \Gamma_P$: (effective phase space factor for unstable particle channel $\pi \Delta$..)

イロン イ部ン イヨン イヨン 三日

Understanding resonance parameters

・ロト ・日下・ ・ ヨト

< ∃ >

æ

understanding resonance parameters

Example 1: $N\Delta$ electromagnetic form factor

 meson-nucleon continuum component is part of resonance property

Example 2: P11 resonance Roper

Analysis of EBAC

reaction mechanism modifies resonance energy

 $m_{P11} = 1.76 \text{GeV}$ (Dyson-Schwinger H. L. L. Roberts et al.)

understanding resonance parameters

- Resonances are characterized by the pole and residue of the PWA
- reaction dynamics is part of the resonance properties (mass, couping constant, extracted resonance parameters). Resulting coupling constants are complex number.
- PWA analysis never gives us 100% accurate amplitudes for the whole energy region. Theoretical inputs on reaction dynamics are unavoidable/necessary both in extracting PWA, extraction of resonance parameters and to understand resonance.
- Combined analysis of 'reaction theory' + 'structure model of hadron' is one promising approach to understand resonance parameters.