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Transverse Momentum Distributions
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@ Transverse Momentum Distribution
1
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@ Operators with (92 )! : higher twists
@ Usual twist decomposition of ¢(0)0#1 ... 9"~ ¢(0) involves matrix elements

(ple(0)0 (9%)'(0) p)

containing 62 rather than 6%
@ 92 is related to parton virtuality
@ Relate virtuality distributions with TMDs



v*y — ¥ transition amplitude at twist 2
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Twist
decomposition

@ Twist-2 distribution amplitude:

wlo0)s:)0 = | " ol@) 509 da 1 O(2?)

@ Twist-2 transition amplitude (for p? = 0 and (¢’ — p)? = —Q?)
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Twist decomposition of bilocal operator
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Distributions @ Taylor expansion in bilocal operator ¢(0)¢(z)

oo

o(x) =3 %z;n cEu, O 91 6(0)

Twist n—o v

decomposition
@ Twist expansion (with {z0}™ = {zu, ... 2u, } OH1 ... O0H" )

B oo 22 Il oo N-‘rl N o
#(z) = ; (Z) szom{za} (0%) ¢(0)

@ Virtuality-dependent matrix elements (p? = 0)

(pl(0){=0}* (8%) $(0)[0) = [i(=p)]F A% Ay,

@ Treating Ay; as z* moments of higher-twist DAs ; ()

> 2,2 I s -
<p|¢><0)¢<z)|o>=z(A ) [ aweno)

=0 4

1 .
E/ B(w, 22 /4) e(P2) dg,
0

@ Bilocal function B(x, 22/4) accumulates information about parton virtuality



Virtuality distributions
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(pl(0){=0}* (82)" $(0)|0) are necessary!
@ Schwinger alpha-representation for any contributing diagram

o 1
(pl#(0)9(2)]0) = Const/o [ deylA(e) + B(a)] /2
j=1

ex —1 Z2/4 i(pz B(a)
x p{ Ala) + Blay TP )A(a>+B<a)}

X exp {ip2C(a) fiZaj(m? — 'Le)}
J

with positive A(a), B(a), C(a)
@ Representation through virtuality distribution amplitude (VDA) ®(z, o)

(pl6(0)(2)[0) = /O Yo /0 ' da bz, ) FPI—io(ie)/d

@ Note: dependence on z2 — ie, support ¢ > 0, and in general p? # 0



Transverse momentum dependent DAs
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Distributions Pion momentum is defined to have no transverse components

@ Projection on 2zt = Qinterval z = (27,2)

1 . —
PO+ —0.p, -0 = /0 dz o(z, 2, ) P77

Impact parameter distribution amplitude (IDA) ¢(z, 2, ) = B(z, —zi /4)
Transverse momentum dependent distribution amplitude

p(z,21) = /\Il(x,kl) ekLz) 2, = / do®(z,0) eio(Z1+ie)/4
0
@ TMDA can be written in terms of VDA (valid “always”)

U(x, k)= / do P(z,0) ekl —ie)/o
0 g

Relation for moments (valid for soft functions)

/\I!(a: ki) K3 d%k ) 7/00 do



Handbag diagram in VDA representation
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@ Starting expression
Handbag in
VDA

1 : ’ .
T(p,q) :/ dz/d4z @) =i2(p2) pe(z) B(z, 2% /4)
0
@ Using VDA representation

7(Q%) / o [ drvtwo) 1 ety
x

@ First term: twist-2 approximation
@ Integral of VDA over o may be written as integral of TMDA over & :

@)= [ ol PURNRLCURE




Spin-1/2 quarks
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@ Handbag contribution
[ e O plE0n" 55 (=21 b0 = i pagaF(@?)

Spin-1/2 @ Antisymmetric part of v £+v* is izge** P54, and we need
quarks

oo 1 L X .
(PlB(0) 4570 (2)]0) = i / do / dz B(z, o) e (p)—io(s* —ic) /4
0 0

@ Resultin terms of VDA (based on SC( 2) ~ 2/(22)?

F(Q )_/ da/ PD(z,0) Q2 { ;52 [1—6*[”QQ+61/0]}

@ Result in terms of TMDA

zQ2 de
F(Q?%) / / —L/ U(z, k) d?K’
(@) 202 Q2 J 2 (z, k') Ak,




Gauge theories
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@ In a covariant gauge handbag should be complemented by
$(0) ... A(z;) . .. (z) insertions of twist-0 gluonic field A, (z;)
@ Can be organized into path-ordered exponential of zero-twist field A

Gauge
theories

1
E(0,z;A) = Pexp [ig Zu / dt A“(tz)]
0
@ and insertions of non-zero twist gluon field
1
A (z) = zl,/ GH (sz) sds ,
0

@ which is the vector potential in the Fock-Schwinger gauge



VDA representation in gauge theories
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@ Two-body gq Fock component is given by gauge-invariant bilocal operator
0%(0,2; A) = ¥(0) v57* E(0, z; A)ep(2)

@ Taylor expansion involves covariant derivatives D* = 9* — ig A*

e o]
1
E(0,2,A)(2) = > — 2y . 2, DM DF7y(0)
= n!
Gauge . N
theories @ We can introduce VDA parametrization

[e) 1 L . .
(p] ©*(0, z; A)|0) :ip"‘/ dU/ dz ®(x,0) ei®(p2)—io (2% ~ic)/4
0 0

@ and proceed as in non-gauge case
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Modeling TMDAs

Generic VDA representation treats (pz) and 22 as independent variables

[es) 1 2 .
(Pl(0)6(2)|0) = F((p2), 2?) = /0 do /0 dz B(z, o) eP)—io(*—ic) /4

@ Lorentz invariance is fully incorporated already
= no a priori correlation of  and o dependence in VDA is expected

@ Simplest example: factorized models for VDA
®(z,0) = p(z) 2(0)
@ Factorized models for TMDA

U(z, k1) = o(a) p(kt)/m



Modeling soft TMDAs
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xT) _ .2 2
V(2 ky) = %e FLA

@ Impact parameter Gaussian DA

oc(@,21) = p(z) e #1074

@ Faster fall-off at large 2, compared to ~ e~1%L1™ of massive propagator

Dc(z,m) _ 161 5 /oo 6—1022/4—i(m2—1’e)/o‘d0_
7 Jo

@ But we need (p|$(0)¢(2)|0) finite at 22 = 0
@ Add a constant term (—4/A?) to 22 in the VDA representation, i.e. take

Modeling
TMDAs eio/A2—im? /o —co Ko (2 k2 +m2/,\)
P ,o3A) = _ v Jk = _— =/
m(@ e ) = ) K myny k) = ) /A

@ Concentrating on finite-size effects: take m = 0 model

eio/A2feo' L,O(CC)

Pm=o(z,05A) = () —5— 5 Pm=o(2,21) = T12A2/4
i



Modeling transition form factor
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td A2 202
Fa(Q?) :/o éw(x) {1— o (1 _ o—wQ%/A )}

@ Power-like (under z-integral) twist-4 contribution
@ Formal Q2 — 0 limit is finite:
2 f7T 1
Fa(Q°=0)= oAz I E/O p(x) dx

Note: F(Q?) is finite for Q2 = 0 in any model with finite ¥ (x, k, = 0)

F(Q*=0) = g/ol‘ll(ac,lq_ =0)dz

Modeling f .
fagtof'”g orm @ Non-Gaussian m = 0 model
L dx A2
FQ>) = — 1— —— +2K5(2 A
@)= [ 5 ela) 1= 2 +2a2050Q/N)

Size of twist-4 term is governed by confinement scale A




Comparison with data
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@ In leading-order perturbative QCD
LOpQCD /2 ! da 2 2
prorace (@) = [ o) = 1%)1+/Q
@ For DAs ¢, (z) ~ (zZ)", one has IFOPCP(Q2) = 1+ 2/r

@ [2%(Q?) = 3 for “asymptotic” wave function s (x) = 6 fraz
@ Recent experimental data from BaBar and Belle do not show flattening yet

1
IS BABAR 5, BELLE
4 4
3]
R
1
10 20 30 40 20 30 40
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Modeling hard @ Curves for BaBar data with flat DA ¢(z) = fr
tail and AZ, =0.35GeV2 or A2 _ = 0.6 GeV?

@ Curves for Belle data with () ~ fr(27)%4
and AZ, =0.3GeV2 or AZ _, = 0.4GeV?

m=0 —




Modeling hard tail, scalar case
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cI>pomt(x’0_) —— e1(w:cp m<)/o
g

z
; 1 1
\I}polnt ,k —
2l p (@, kL) 7 k2 4+ m? — 2zp?
0 PPt (1 21 ) = 2K (21 vV/m?2 — zZp?)

@ logarithmic singularity for z; =0
@ Hard exchange model
i(zzp?—m?) /o

exc . o €
Z__?l._ yp >N (x, 05 y) = ig” 1672 02

X/mm{?a}e—i?ﬂ?ﬁpz/"dﬁ
O_ZT yp 0

@ For p? = 0, B-integral gives part of ERBL evolution kernel
Viwy) = 20 <y)+ = 0> y)

@ TMDA generated in p? = 0 limit (using ag = g2/1672)

Scalar case

V(z,y)
\IIEXCh ,k : — Qg ’
(%, k15y) = 7(1& + m2)2




Convolution model, scalar case

Virtualit . ) .
Dis{;gjtioyns Superpose yp, yp states the weight ¢o(y) = “primordial” DA

@ TMDA is given by a convolution

Qg

e (g k) = - W

/ V(z,y) eo(y) dy

@ Use “primordial” soft TMDA o (y, k1) = vo(z, ki)/rr (and m = 0)

7
5 R2 YD TBo (g k) = k2 / dy

| R
0z X{/o e (”’V(w))]

@ Term in square brackets may be written as

Viz, °
[ = o) {wo(y) -/ wo<y,kf)dk12}
1 k2 /V (z,y)

@ For large &, leading 1/k4 term is determined by DA g (y) only

Scalar case




Convolution model, spinor quarks
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@ For spin-1/2 quarks interacting via (pseudo)scalar gluon field

= extra k2 factor from numerator trace
€

W (2, k) /dy/ dwo< L )>

= Vo nl@ +

@ &, — 0 limitis finite

1
V(e ks =0) =ay [ dyWoy ks =0)
0

@ Using Gaussian model for By

I

WP (a ks = 0) =0y

Spinor case



Evolution in impact parameter space
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Bo 2 ! °° dv 2
oy’ (z,27) =ag o dyV(z,y) ) TWO(yvVZL V(%Z/))

@ Integral over vis cutat v ~ 4/2% A% = In(22 A%/4)
@ We can keep hard quarks massless
@ lllustration for Gaussian model with flat DA wq(z, 21 ) = exp[—22 A%/4]

Bo

204} + 0.2 (,DY
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Adding UV divergent correction

@ Adding self-energy part (with © = A/2 and Bessel form for log singularity)

5 2)= ' fa 2
SOY(Z‘7 ZJ_) = Qg yv(m7y) Yo\Y, vz V(x7 y)
0 1 v
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— Ko(z1A/2) <P0(937Zi)]

@ Total IDA ¢(z,22 ) = @o(z, 22 ) + Spy (z,22)
@ lllustration for Gaussian model with flat DA ¢o(z) = 1 and ag = 0.2

p(z,21)/po(w, 21)

12 22N /4=1
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Spinor case €T



Summary
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Outlined a new approach to transverse momentum dependence

@ Introduced virtuality distribution ®(z, o)

@ Introduced transverse momentum distribution ¥ (z, k)
and wrote it in terms of ®(x, o)

@ Results of covariant calculations in terms of ®(x, o) converted into
expressions involving ¥ (z, k)

@ Proposed simple models for soft VDAs/TMDAs, and used them for
comparison with experimental data on the pion transition form factor

@ Described generation of hard tails from soft primordial TMDAs for scalar
gluons

Summary



Outlook
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Future directions: building hard tail for QCD case

@ Extension of VDA approach onto inclusive reactions,
such as Drell-Yan and SIDIS processes

@ Building VDA-based models for soft parts of TMDs that would have a
non-Gaussian behavior at large k.

@ Generating hard tails from these soft TMDs

Summary



	Twist decomposition
	Virtuality distributions
	Transverse momentum distributions
	Handbag diagram in VDA representation
	Spin-1/2 quarks 
	 Gauge theories
	Modeling TMDAs
	Modeling transition form factor 
	Modeling hard tail 
	Scalar case 
	Spinor case 

	Summary

