Joint resummation for pion wave function and pion transition form factor

Yu-Ming Wang

RWTH Aachen and TUM

Talk based on:
Hsiang-nan Li, Yue-Long Shen, YMW, JHEP 01 (2014) 004.

$$
\text { QCD Evolution Workshop, Santa Fe, 16. 05. } 2014
$$

What is pion wave function?

- TMD wave function in k_{T} factorization (Collins, 2003):

$$
\begin{aligned}
\Phi\left(x, k_{T}, \zeta^{2}, \mu_{f}\right)= & \int \frac{d y^{+}}{2 \pi} \frac{d^{2} y_{T}}{(2 \pi)^{2}} e^{-i x P^{-} y^{+}+i \mathbf{k}_{T} \cdot y_{T}} \\
& \times\langle 0| \bar{q}(y) W_{y}(u)^{\dagger} I_{u ; y, 0} W_{0}(u) \mathfrak{h}_{+} \gamma_{5} q(0)|\pi(P)\rangle .
\end{aligned}
$$

- Light-cone divergence regularized by the rapidity parameter $\zeta^{2}=4\left(n_{-} \cdot u\right)^{2} / u^{2}$.
- Transverse gauge link $I_{u ; y, 0}$ to ensure a strict gauge invariance. Does not contribute in covariant gauge, but contributes in light-cone gauge (Belitsky, Ji and Yuan, 2003).
- Light-cone distribution amplitude in collinear factorization:

$$
\langle 0 \mid \bar{q}(0)[0, y]\rangle \gamma \gamma_{5} q(y)\left|\pi^{+}(p)\right\rangle \stackrel{y^{2}=0}{=} i f_{\pi} p \cdot y \int_{0}^{1} d x e^{-i x p \cdot y} \phi_{\pi}(x, \mu) .
$$

- ER-BL evolution implies expansion in Gegenbauer-polynomials:

$$
\phi_{\pi}(x, \mu)=6 x(1-x) \sum_{n=0}^{+\infty}\left[\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right]^{\gamma_{n}^{(0)} / 2 \beta_{0}} a_{n}\left(\mu_{0}\right) C_{n}^{3 / 2}(2 x-1) .
$$

Why pion wave function?

- Key nonperturbative quantity in k_{T} factorization for many exclusive processes.
- NLO k_{T} factorization for the $\gamma^{*} \pi^{0} \rightarrow \gamma$ form factor (Nandi and Li, 2007):
[For a different scheme, see Brodsky and Lepage (1981), and Musatov and Radyushkin (1997)]

$$
F\left(Q^{2}\right)=\Phi \otimes H \otimes S \otimes J
$$

- Soft contribution suppressed by the Sudakov mechanism (Botts and Sterman, 1989; Li and Sterman, 1992).
- Transverse momentum dependence becomes important at the end-points.
- Threshold resummation can suppress the end-point contribution further.

- NLO k_{T} factorization for the pion e.m. form factor (Li, Shen, YMW and Zou, 2011) and the $B \rightarrow \pi \ell v$ form factors (Li, Shen and YMW 2012).

Structure of Pion wavefunction at NLO

- Quark-Wilson-line vertex diagrams (Nandi and Li, 2007):

(d)

$$
\begin{aligned}
\Phi_{d}^{(1)} \otimes H^{(0)} & =\frac{\alpha_{s} C_{F}}{4 \pi}\left[\frac{1}{\varepsilon}+\ln \frac{4 \pi \mu_{\mathrm{f}}^{2}}{k_{T}^{2} e^{\gamma_{E}}}-\ln ^{2} \frac{\zeta^{2}}{k_{T}^{2}}+\ln \frac{\zeta^{2}}{k_{T}^{2}}+\ldots\right] H^{(0)} \\
\Phi_{e}^{(1)} \otimes H^{(0)} & =\frac{\alpha_{s} C_{F}}{4 \pi}\left[\ln ^{2} \frac{x \zeta^{2}}{k_{T}^{2}}+\ldots\right] H^{(0)}
\end{aligned}
$$

- The double rapidity logarithm $\ln ^{2} \zeta^{2}$ in the B meson case is absent here.
- Mixed logarithm $\ln x \ln \left(\zeta^{2} / k_{T}^{2}\right)$ in the sum $\left(\Phi_{d}^{(1)}+\Phi_{e}^{(1)}\right) \otimes H^{(0)}$.
- Unification of rapidity, k_{T} and threshold resummation: joint resummation (Li, 1998; Laenen, Sterman, Vogelsang, 2000, 2001).

Construction of evolution equation

- Rapidity derivative (Collins, Soper, 1981; Li, 1998):

$$
\zeta^{2} \frac{d}{d \zeta^{2}} \Phi=-\frac{u^{2}}{n_{-} \cdot u} \frac{n_{-}^{\alpha}}{2} \frac{d}{d u^{\alpha}} \Phi
$$

Advantage: u dependence appears only through the Wilson line interactions.

- Rapidity derivative of the Feynman rule associated with the Wilson line:

$$
\begin{array}{r}
\zeta^{2} \frac{d}{d \zeta^{2}} \frac{u^{\beta}}{u \cdot l+i \varepsilon}=\frac{\hat{u}^{\beta}}{2 u \cdot l}, \\
\hat{u}^{\beta}=\frac{u^{2}}{n_{-} \cdot u}\left(\frac{n_{-} \cdot l}{u \cdot l} u^{\beta}-n_{-}^{\beta}\right) .
\end{array}
$$

- The rapidity evolution equation:

$$
\zeta^{2} \frac{d}{d \zeta^{2}} \Phi\left(x, k_{T}, \zeta^{2}, \mu_{f}\right)=\Gamma\left(x, k_{T}, \zeta^{2}\right) \otimes \Phi\left(x, k_{T}, \zeta^{2}, \mu_{f}\right)
$$

- The vertex \hat{u}^{β} contracted to the vertex in Φ. Suppression of collinear dynamics associated with the Wilson link. Soft and hard gluon radiations are dominant in the kernel $\Gamma\left(x, k_{T}, \zeta^{2}\right)$.

Soft function

- Soft gluon radiations:

- The reducible diagram:

$$
K_{1}=-\frac{i g^{2} C_{F}}{2} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\hat{u} \cdot n_{-}}{(u \cdot l+i \varepsilon)\left(l^{2}+i \varepsilon\right)\left(n_{-} \cdot l+i \varepsilon\right)}=-\frac{\alpha_{s} C_{F}}{4 \pi}\left(\frac{1}{\varepsilon}-\gamma_{E}+\ln \frac{4 \pi \mu^{2}}{\lambda^{2}}\right) .
$$

IR divergence regularized by the gluon mass λ.

- The irreducible diagram:

$$
\begin{aligned}
K_{2} \otimes \Phi= & \frac{i g^{2} C_{F}}{2} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\hat{u} \cdot n_{-}}{(u \cdot l+i \varepsilon)\left(l^{2}+i \varepsilon\right)\left(n_{-} \cdot l+i \varepsilon\right)} \\
& \times \Phi\left(x-l^{-} / P^{-},\left|\mathbf{k}_{T}-\mathbf{l}_{T}\right|, \zeta^{2}, \mu_{f}\right) .
\end{aligned}
$$

Fourier and Mellin transformations of $K_{2} \otimes \Phi$:

$$
\tilde{K}_{2}=\frac{\alpha_{s} C_{F}}{2 \pi}\left[K_{0}(\lambda b)-K_{0}\left(\frac{\zeta P^{-} b}{N}\right)\right]+O\left(1 / \zeta^{2}\right) .
$$

- Unrenormalized soft function in the large N limit:

$$
\tilde{K}^{(b)}=K_{1}+\tilde{K}_{2}=-\frac{\alpha_{s} C_{F}}{4 \pi}\left(\frac{1}{\varepsilon}-\gamma_{E}+\ln \frac{4 \pi \mu^{2} N^{2}}{\zeta^{2} P^{-2}}\right) .
$$

Cancelation of IR divergence!

Hard function

- Hard gluon radiations:

Subtraction to avoid the double counting of soft contribution.

- Analytical expressions:

$$
\begin{aligned}
G_{1} & =-\frac{i g^{2} C_{F}}{2} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{(\bar{x} \not p+l) \hat{\psi}}{(u \cdot l+i \varepsilon)\left(l^{2}+i \varepsilon\right)\left[(\bar{x} P+l)^{2}+i \varepsilon\right]}, \\
G_{2} & =K_{1} .
\end{aligned}
$$

- Unrenormalized hard function:

$$
G^{(b)}=G_{1}-G_{2}=\frac{\alpha_{S} C_{F}}{4 \pi}\left[\frac{1}{\varepsilon}-\gamma_{E}+\ln \frac{4 \pi \mu^{2}}{\zeta^{2}\left(\bar{x} P^{-}\right)^{2}}-4\right] .
$$

Infrared finite due to the cancelation of soft divergence!

- Factorization scale dependence cancels between soft and hard functions. $\Leftarrow \mu$ independence of the mixed logarithm to be resummed.

RG improved evolution kernel

- Renormalized soft and hard functions:

$$
\tilde{K}^{(r)}(\mu)=-\frac{\alpha_{S} C_{F}}{2 \pi} \ln \frac{\mu N}{\zeta P^{-}}, \quad G^{(r)}(\mu)=\frac{\alpha_{s} C_{F}}{2 \pi}\left(\ln \frac{\mu}{\zeta P^{-}}-2\right) .
$$

- RGE of soft and hard functions:

$$
\mu \frac{d \tilde{K}^{(r)}}{d \mu}=-\frac{\alpha_{s}(\mu) C_{F}}{2 \pi}, \quad \mu \frac{d G^{(r)}}{d \mu}=\frac{\alpha_{s}(\mu) C_{F}}{2 \pi} .
$$

- RG improvement:

$$
\begin{aligned}
\tilde{K}^{(r)}(\mu)+G^{(r)}(\mu) & =\tilde{K}^{(r)}\left(\mu_{0}\right)+G^{(r)}\left(\mu_{1}\right)-\int_{\mu_{0}}^{\mu_{1}} \frac{d \tilde{\mu}}{\tilde{\mu}} \frac{\alpha_{s}(\tilde{\mu}) C_{F}}{2 \pi}, \\
\mu_{0} & :=\mu_{0}(\zeta)=\frac{\zeta P^{-}}{N}, \quad \mu_{1}:=\mu_{1}(\zeta)=e^{2} \zeta P^{-} .
\end{aligned}
$$

Chosen to diminish the initial conditions $\tilde{K}^{(r)}\left(\mu_{0}\right)$ and $G^{(r)}\left(\mu_{1}\right)$.

- Gluon radiations from the spectator quark also contribute. Only contribute to the kernel Γ at NLL level. \Rightarrow Do not generate the mixed logarithm $\ln x \ln \left(\zeta^{2} P^{-2} / k_{T}^{2}\right)$.

Solution in Mellin and impact-parameter spaces

- Evolution equation in N and b spaces:

$$
\begin{aligned}
& \zeta^{2} \frac{d}{d \zeta^{2}} \tilde{\Phi}\left(N, b, \zeta^{2}, \mu_{f}\right)=\tilde{\Gamma}\left(N, b, \zeta^{2}\right) \tilde{\Phi}\left(N, b, \zeta^{2}, \mu_{f}\right) \\
& \tilde{\Gamma}\left(N, b, \zeta^{2}\right)=\tilde{K}^{(r)}(\mu)+G^{(r)}(\mu)=-\int_{\mu_{0}(\zeta)}^{\mu_{1}(\zeta)} \frac{d \tilde{\mu}}{\tilde{\mu}} \frac{\alpha_{s}(\tilde{\mu}) C_{F}}{2 \pi} .
\end{aligned}
$$

- Solution:

$$
\begin{aligned}
\tilde{\Phi}\left(N, b, \zeta^{2}, \mu_{f}\right)= & \exp \left\{-\int_{\zeta_{0}^{2}}^{\zeta^{2}} \frac{d \tilde{\zeta}^{2}}{\tilde{\zeta}^{2}}\left[\int_{\mu_{0}(\tilde{\zeta})}^{\mu_{1}(\tilde{\zeta})} \frac{d \tilde{\mu}}{\tilde{\mu}} \frac{\alpha_{s}(\tilde{\mu}) C_{F}}{2 \pi}\right]\right\} \\
& \times \tilde{\Phi}\left(N, b, \zeta_{0}^{2}, \mu_{f}\right) .
\end{aligned}
$$

- RGE for μ_{f} evolution:

$$
\mu_{f} \frac{d}{d \mu_{f}} \tilde{\Phi}\left(N, b, \zeta^{2}, \mu_{f}\right)=\frac{3}{2} \frac{\alpha_{s}\left(\mu_{f}\right) C_{F}}{\pi} \tilde{\Phi}\left(N, b, \zeta^{2}, \mu_{f}\right) .
$$

- Combined evolution:

$$
\begin{aligned}
\tilde{\Phi}\left(N, b, \zeta^{2}, \mu_{f}\right)=\exp \{- & \int_{\zeta_{0}^{2}}^{\zeta^{2}} \frac{d \tilde{\zeta}^{2}}{\tilde{\zeta}^{2}}\left[\int_{\mu_{0}(\tilde{\zeta})}^{\mu_{1}(\tilde{\zeta})} \frac{d \tilde{\mu}}{\tilde{\mu}} \frac{\alpha_{s}(\tilde{\mu}) C_{F}}{2 \pi}\right] \\
& \left.+\frac{3}{2} \int_{\mu_{i}}^{\mu_{f}} \frac{d \tilde{\mu}}{\tilde{\mu}} \frac{\alpha_{s}(\tilde{\mu}) C_{F}}{\pi}\right\} \tilde{\Phi}\left(N, b, \zeta_{0}^{2}, \mu_{i}\right) .
\end{aligned}
$$

Evolution of the hard kernel

- Rapidity evolution:

$$
\zeta^{2} \frac{d}{d \zeta^{2}} \tilde{H}\left(N, b, \zeta^{2}, Q^{2}, \mu_{f}\right)=-\tilde{\Gamma}\left(N, b, \zeta^{2}\right) \tilde{H}\left(N, b, \zeta^{2}, Q^{2}, \mu_{f}\right)
$$

- Factorization scale evolution:

$$
\mu_{f} \frac{d}{d \mu_{f}} \tilde{H}\left(N, b, \zeta^{2}, Q^{2}, \mu_{f}\right)=-\frac{3}{2} \frac{\alpha_{s}\left(\mu_{f}\right) C_{F}}{\pi} \tilde{H}\left(N, b, \zeta^{2}, Q^{2}, \mu_{f}\right) .
$$

- Combined evolution:

$$
\begin{aligned}
\tilde{H}\left(N, b, \zeta^{2}, Q^{2}, \mu_{f}\right)= & \exp \left\{\int_{\zeta^{2}}^{\zeta_{1}^{2}} \frac{d \tilde{\zeta}^{2}}{\tilde{\zeta}^{2}}\left[\int_{\mu_{0}(\tilde{\zeta})}^{\mu_{1}(\tilde{\zeta})} \frac{d \tilde{\mu}}{\tilde{\mu}} \frac{\alpha_{s}(\tilde{\mu}) C_{F}}{2 \pi}\right]\right. \\
& \left.-\frac{3}{2} \int_{t}^{\mu_{f}} \frac{d \tilde{\mu}}{\tilde{\mu}} \frac{\alpha_{s}(\tilde{\mu}) C_{F}}{\pi}\right\} \tilde{H}\left(N, b, \zeta_{1}^{2}, Q^{2}, t\right)
\end{aligned}
$$

Depends on the final rapidity parameter ζ_{1} and the characteristic hard scale t.

- Choices of boundary conditions:

$$
\zeta_{0}^{2}=\left(\frac{a N^{1 / 4}}{P^{-} b}\right)^{2}, \quad \zeta_{1}^{2}=\tilde{a} N^{1 / 2}
$$

Eliminate the logarithmic enhancements in $\tilde{\Phi}\left(N, b, \zeta_{0}^{2}, \mu_{i}\right)$ and $\tilde{H}\left(N, b, \zeta_{1}^{2}, Q^{2}, t\right)$.

Joint resummation improved k_{T} factorization

- Factorization formula of $\gamma^{*} \pi^{0} \rightarrow \gamma$ form factor:

$$
\begin{aligned}
F\left(Q^{2}\right) & =\exp \left\{-\int_{\zeta_{0}^{2}}^{\zeta_{1}^{2}} \frac{d \tilde{\zeta}^{2}}{\tilde{\zeta}^{2}}\left[\int_{\mu_{0}(\tilde{\zeta})}^{\mu_{1}(\tilde{\zeta})} \frac{d \tilde{\mu}}{\tilde{\mu}} \frac{\alpha_{s}(\tilde{\mu}) C_{F}}{2 \pi}\right]+\frac{3}{2} \int_{\mu_{i}}^{t} \frac{d \tilde{\mu}}{\tilde{\mu}} \frac{\alpha_{s}(\tilde{\mu}) C_{F}}{\pi}\right\} \\
& \tilde{\Phi}\left(N, b, \zeta_{0}^{2}, \mu_{i}\right) \otimes \tilde{H}\left(N, b, \zeta_{1}^{2}, Q^{2}, t\right), \\
& \equiv \tilde{\Phi}\left(N, b, \zeta_{1}^{2}, t\right) \otimes \tilde{H}\left(N, b, \zeta_{1}^{2}, Q^{2}, t\right) .
\end{aligned}
$$

- Have confirmed that the expansion of the exponential factor reproduces the mixed logarithm and the single logarithm $\ln (1 / N)$ in the NLO pion transition form factor.
- A complete treatment of the logarithmic enhancement for an arbitrary rapidity parameter in the pion transition form factor.
The conventional k_{T} factorization formula with the Sudakov and threshold resummations is not factorization-scheme independent.

Resummation improved wave functions

- Inverse Mellin transformation:

$$
\bar{\Phi}\left(x, b, \zeta_{1}^{2}, t\right)=\int_{c-i \infty}^{c+i \infty} \frac{d N}{2 \pi i}(1-x)^{-N} \tilde{\Phi}\left(N, b, \zeta_{1}^{2}, t\right) .
$$

No Fourier transformation for the comparison of Sudakov resummation.

- Factorized model for the initial condition:

$$
\Phi\left(x, k_{T}, \zeta_{0}^{2}, \mu_{i}\right)=\phi\left(x, \zeta_{0}^{2}, \mu_{i}\right) \Sigma\left(k_{T}^{2}\right), \quad \Sigma\left(k_{T}^{2}\right)=4 \pi \beta^{2} \exp \left(-\beta^{2} k_{T}^{2}\right) .
$$

Translated into the Mellin and impact-parameter spaces.
See Radyushkin's talk for more discussion.

- Three different models of $\phi\left(x, \zeta_{0}^{2}, \mu_{i}\right)$:

$$
\begin{aligned}
\phi^{\mathrm{I}}\left(x, \zeta_{0}^{2}, \mu_{i}\right) & =6 x(1-x) \Rightarrow \frac{6}{(N+1)(N+2)}, \\
\phi^{\mathrm{II}}\left(x, \zeta_{0}^{2}, \mu_{i}\right) & =1 \Rightarrow \frac{1}{N}, \\
\phi^{\mathrm{III}}\left(x, \zeta_{0}^{2}, \mu_{i}\right) & =6 x(1-x)\left[1+a_{2} C_{2}^{3 / 2}(2 x-1)\right] \\
& \Rightarrow \frac{6}{(N+1)(N+2)}\left[1+6 a_{2} \frac{(N-1)(N-2)}{(N+3)(N+4)}\right] .
\end{aligned}
$$

- Can include the higher-order Gegenbauer moments, but (Agaev et al, 2011; Kroll, 2011.)
- The contributions from higher moments suppressed by the soft corrections.

Joint Resummation improved wave functions

- Inverse Mellin transformation with both frozen and running α_{s}.
- Analytical parametrization of α_{s} (Solovtsov and Shirkov, 1999):

$$
\alpha_{s}(\mu)=\frac{4 \pi}{\beta_{0}}\left[\frac{1}{\ln \left(\mu^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}-\frac{\Lambda_{\mathrm{QCD}}^{2}}{\mu^{2}-\Lambda_{\mathrm{QCD}}^{2}}\right] .
$$

- Resummation effect in pion wave function $\bar{\Phi}\left(x, b, \zeta_{1}^{2}, \mu_{i}\right)$:

$$
\text { solid: initial condition } \phi^{\mathrm{I}}\left(x, \zeta_{0}^{2}, \mu_{i}\right)
$$

- Stronger suppression of the small x region compared to the moderate x region.
- The suppression strengthens with the transverse separation b at a given x.

Comparison of Joint and Sudakov resummations

- Joint vs Sudakov resummation:

Left: Sudakov resummation, solid, dashed, and dotted curves for $Q^{2}=5 \mathrm{GeV}^{2}, 10 \mathrm{GeV}^{2}$, and 40 GeV^{2} at $x=0.2$. Right: The same for the joint resummation.

- Large b region suppressed in both cases, but stronger with the joint resummation.
- Different phenomenological consequences with the two resummation techniques.

$\gamma^{*} \pi^{0} \rightarrow \gamma$ form factor

- Transition matrix element:

$$
\left\langle\gamma\left(P^{\prime}, \varepsilon\right)\right| j_{\mu}^{e m}(q)\left|\pi^{0}(P)\right\rangle=i g_{e m}^{2} \varepsilon_{\mu v \alpha \beta} \varepsilon^{* v} P^{\alpha} P^{\prime \beta} F\left(Q^{2}\right)
$$

- Different approaches to compute the pion form factor:
- Direct approaches: Collinear $\left(k_{T}\right)$ factorization formulae.
- Indirect approaches: (Light-cone) QCD Sum rules.
- Status of experimental measurements:

Scaling violation?

Shape of pion wave function?
The onset of QCD factorization?

Some popular explanations:

- Non-vanishing pion wave function at the end points (Radyushkin, 2009; Polyakov, 2009).

$$
F\left(Q^{2}\right)=\frac{\sqrt{2}}{3} \int_{0}^{1} \frac{\varphi_{\pi}(x)}{x Q^{2}}[1-\underbrace{\exp \left(-\frac{x Q^{2}}{2 \bar{x} \sigma}\right)}_{\Uparrow}]
$$

from k_{T} dependence of pion wave function

- Large soft (Feynman) corrections at moderate Q^{2} (Agaev, Braun, Offen, Porkert, 2011).

The "hard" and "soft" contributions to the $\pi^{0} \gamma^{*} \gamma$ form factor for model I (solid curves) and model III (dashdotted curves). The experimental data are from BaBar (full circles) and CLEO (open triangles).

- Threshold resummation generates power-like $[x(1-x)]^{c\left(Q^{2}\right)}$ distribution (Li and Mishima 2009). $c\left(Q^{2}\right)$ is around 1 for low Q^{2}, but small for high Q^{2}.

Factorization formula of pion form factor

- k_{T} factorization with the conventional resummation (Nandi and Li, 2007):

$$
\begin{aligned}
F\left(Q^{2}\right)= & \frac{\sqrt{2} f_{\pi}}{3} \int_{0}^{1} d x \int_{0}^{\infty} b d b \bar{\Phi}(x, b, t) e^{-S(x, b, Q, t)} S_{t}(x, Q) \\
& \times K_{0}(\sqrt{x} Q b)\left[1-\frac{\alpha_{s}(t) C_{F}}{4 \pi}\left(3 \ln \frac{t^{2} b}{2 \sqrt{x} Q}+\gamma_{E}+2 \ln x+3-\frac{\pi^{2}}{3}\right)\right] .
\end{aligned}
$$

The rapidity parameter fixed as $\zeta^{2}=2$.

- k_{T} factorization with the joint resummation:

$$
\begin{aligned}
F\left(Q^{2}\right)= & \frac{\sqrt{2} f_{\pi}}{3} \int_{0}^{1} d x \int_{0}^{\infty} b d b \bar{\Phi}\left(x, b, \zeta_{1}^{2}, t\right) K_{0}(\sqrt{x} Q b) \\
& \times\left[1-\frac{\alpha_{s}(t) C_{F}}{4 \pi}\left(3 \ln \frac{t^{2} b}{2 \sqrt{x} Q}+\ln 2+2\right)\right]
\end{aligned}
$$

- Choices of the factorization scale t :
- $t^{2}=\sqrt{x} Q / b$ to eliminate the remaining logarithm.
- Typical scale of the hard scattering $t=\max (\sqrt{x} Q, 1 / b)$ [default choice].
- Two scenarios do not generate practical difference in our formalism. \Rightarrow The joint resummation has suppressed the contribution from the nonperturbative region effectively.

Confronting the data I

- Results with the asymptotic pion wave function:

The experimental data from CLEO (dots), BaBar (triangles), and Belle (squares).

The dashed and dotted (dotdashed and solid) curves from LO and NLO predictions with the conventional resummations (joint resummation).

- The predicted $Q^{2} F\left(Q^{2}\right)$ with the conventional resummations saturates as $Q^{2}>5 \mathrm{GeV}^{2}$. Can accommodate the Belle data except the first two bins.
Fail to describe the BaBar data.
- The joint-resummation effect decreases the predictions in the conventional approach.

Due to the stronger suppression at small x from joint resummation.

Confronting the data II

- Results with the flat pion wave function:

The experimental data from CLEO (dots), BaBar (triangles), and Belle (squares).

The dashed and dotted (dotdashed and solid) curves from LO and NLO predictions with the conventional resummations (joint resummation).

- The form factor $Q^{2} F\left(Q^{2}\right)$ grows steadily with Q^{2} in both resummation formalisms. Tree-level k_{T} factorization formula $\Rightarrow Q^{2} F\left(Q^{2}\right) \sim \ln \left(Q^{2} / k_{T}^{2}\right)$.
- The NLO curves from the conventional resummations and from the joint resummation turn out to be similar.

Confronting the data III

- Results with the non-asymptotic pion wave function:

The experimental data from CLEO (dots), BaBar (triangles), and Belle (squares).

The second Gegenbauer moment: $a_{2}=0.05$.

- Pion wave function with a small a_{2} can describe the data better.
- The Chernyak-Zhitnitsky model or the Bakulev-Mikhailov-Stefanis model, which involve a large a_{2}, overshoot the data in our formalism.

Conclusion and outlook

- Constructed an evolution equation to resum the mixed logarithm $\ln x \ln \left(\zeta^{2} / k_{T}^{2}\right)$.
- The moderate x and small b regions more highlighted with joint resummation.
- The predictions for the pion transition form factor confronted with the data. A small a_{2} favored in joint-resummation improved k_{T} factorization.
- More efforts are in demand on theory side:
- Better control on the pion wave function.
- Include the soft contribution in k_{T} factorization.
- Have checked that our joint-resummation formalism can be extend to k_{T} factorization of pion e.m. form factor.
- The same ζ_{0}^{2} diminishes the large logarithms in the amplitudes of effective diagrams at NLO.
- Can find ζ_{1}^{2} and ζ_{2}^{2} to eliminate the large logarithms in the hard kernel.

