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What is pion wave function?
TMD wave function in kT factorization (Collins, 2003):

Φ(x,kT ,ζ
2,µf ) =

∫ dy+

2π

d2yT

(2π)2 e−ixP−y++ikT ·yT

×〈0|q̄(y)Wy(u)† Iu;y,0 W0(u)n/+γ5q(0)|π(P)〉 .

I Light-cone divergence regularized by the rapidity parameter ζ
2 = 4(n− ·u)2/u2.

I Transverse gauge link Iu;y,0 to ensure a strict gauge invariance. Does not contribute
in covariant gauge, but contributes in light-cone gauge (Belitsky, Ji and Yuan, 2003).

Light-cone distribution amplitude in collinear factorization:

〈0|q̄(0) [0,y]y/ γ5 q(y)|π+(p)〉 y2=0
= ifπ p · y

∫ 1

0
dxe−ixp·y

φπ (x,µ) .

ER-BL evolution implies expansion in Gegenbauer-polynomials:

φπ (x,µ) = 6x(1− x)
+∞

∑
n=0

[
αs(µ)

αs(µ0)

]γ
(0)
n /2β0

an(µ0)C3/2
n (2x−1) .
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Why pion wave function?

Key nonperturbative quantity in kT factorization for many exclusive processes.

NLO kT factorization for the γ
∗
π

0→ γ form factor (Nandi and Li, 2007):
[For a different scheme, see Brodsky and Lepage (1981), and Musatov and Radyushkin (1997)]

F(Q2) = Φ⊗H⊗S⊗ J .

I Soft contribution suppressed by the Sudakov
mechanism (Botts and Sterman, 1989; Li and
Sterman, 1992).

I Transverse momentum dependence becomes
important at the end-points.

I Threshold resummation can suppress the
end-point contribution further.
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NLO kT factorization for the pion e.m. form factor (Li, Shen, YMW and Zou, 2011) and the
B→ π`ν form factors (Li, Shen and YMW 2012).
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Structure of Pion wavefunction at NLO

Quark-Wilson-line vertex diagrams (Nandi and Li, 2007): 7

(g) (h)

(a)

(f)

(b) (c) (d) (e)

(i) (j)

FIG. 5: Effective diagrams.

with a choice of n2 6= 0 for the Wilson line direction to regularize the light-cone singularities. The NLO wave
functions then depend on n2 through the scale ζ2

1 ≡ 4(n · P1)
2/|n2| or ζ2

2 ≡ 4(n · P2)
2/|n2|, which is regarded as a

factorization-scheme dependence. This dependence, entering a hard kernel when taking the difference between the
quark diagrams and the effective diagrams, can be minimized by adhering to a fixed n2. Note that the soft subtraction
factor introduced in [10] is not necessary here, which is needed for a choice of n2 = 0.

The self-energy corrections from Figs. 5(a) and 5(b) are written as

Φ(1)
a ⊗ H(0) = Φ

(1)
b ⊗ H(0) = −αsCF

8π

(
1

ε
+ ln

4πµ2
f

δ1Q2eγE
+ 2

)
H(0), (25)

H(0) ⊗ Φ(1)
a = H(0) ⊗ Φ

(1)
b = −αsCF

8π

(
1

ε
+ ln

4πµ2
f

δ2Q2eγE
+ 2

)
H(0), (26)

whose expressions are similar to those from the quark diagrams but with the factorization scale µf . The contribution
from the box diagram in Fig. 5(c) is power-suppressed in the small x region:

Φ(1)
c ⊗ H(0) = H(0) ⊗ Φ(1)

c = 0. (27)

The sign of the plus component n+ of the vector n is arbitrary, which could be positive or negative (n− has a
positive sign, the same as of P −

2 ). Choosing n+ < 0, i.e., n2 < 0 as in [5, 38, 39], Fig. 5(d) leads, in the small x
region, to

Φ
(1)
d ⊗ H(0) =

αsCF

4π

(
1

ε
+ ln

4πµ2
f

k2
1T eγE

− ln2 ζ2
1

k2
1T

+ ln
ζ2
1

k2
1T

+ 2 − π2

3

)
H(0),

H(0) ⊗ Φ
(1)
d =

αsCF

4π

(
1

ε
+ ln

4πµ2
f

k2
2T eγE

− ln2 ζ2
2

k2
2T

+ ln
ζ2
2

k2
2T

+ 2 − π2

3

)
H(0), (28)

which reproduces the Sudakov logarithm in the form of ln2(ζ2/k2
T ). As computing the convolution of Φ

(1)
e with H(0),

the momentum fraction appearing in the hard kernel should be restricted between 0 and 1. The expression for Fig. 5(e)
is given, in the small x region, by

Φ(1)
e ⊗ H(0) =

αsCF

4π

[
ln2

(
x1ζ

2
1

k2
1T

)
+

2π2

3

]
H(0),

H(0) ⊗ Φ(1)
e =

αsCF

4π

[
ln2

(
δ12ζ

2
2

x1k2
2T

)
+

2π2

3

]
H(0), (29)

where terms vanishing with k2
T → 0 have been dropped. It is observed that Fig. 5(e) also generates a double logarithm,

whose importance is attenuated by the small x.

Φ
(1)
d ⊗H(0) =

αsCF

4π

[
1
ε
+ ln

4πµ2
f

k2
T eγE

− ln2 ζ 2

k2
T
+ ln

ζ 2

k2
T
+ ...

]
H(0),

Φ
(1)
e ⊗H(0) =

αsCF

4π

[
ln2 xζ 2

k2
T

+ ...

]
H(0) .

The double rapidity logarithm ln2
ζ

2 in the B meson case is absent here.

Mixed logarithm lnx ln(ζ 2/k2
T) in the sum (Φ

(1)
d +Φ

(1)
e )⊗H(0).

Unification of rapidity, kT and threshold resummation: joint resummation (Li, 1998;
Laenen, Sterman, Vogelsang, 2000, 2001).
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Construction of evolution equation
Rapidity derivative (Collins, Soper, 1981; Li, 1998):

ζ
2 d

dζ 2 Φ =− u2

n− ·u
nα
−
2

d
duα

Φ .

Advantage: u dependence appears only through the Wilson line interactions.

Rapidity derivative of the Feynman rule associated with the Wilson line:

ζ
2 d

dζ 2
uβ

u · l+ iε
=

ûβ

2u · l ,

ûβ =
u2

n− ·u

(
n− · l
u · l uβ −nβ

−

)
.

The rapidity evolution equation:

ζ
2 d

dζ 2 Φ(x,kT ,ζ
2,µf ) = Γ(x,kT ,ζ

2)⊗Φ(x,kT ,ζ
2,µf ) .

The vertex ûβ contracted to the vertex in Φ.
Suppression of collinear dynamics associated with the Wilson link.
Soft and hard gluon radiations are dominant in the kernel Γ(x,kT ,ζ

2).
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Soft function
Soft gluon radiations:

ππ +

The reducible diagram:

K1 =−
ig2CF

2

∫ d4l
(2π)4

û ·n−
(u · l+ iε)(l2 + iε)(n− · l+ iε)

=−αs CF

4π

(
1
ε
− γE + ln

4πµ2

λ 2

)
.

IR divergence regularized by the gluon mass λ .
The irreducible diagram:

K2⊗Φ =
ig2CF

2

∫ d4l
(2π)4

û ·n−
(u · l+ iε)(l2 + iε)(n− · l+ iε)

×Φ(x− l−/P−, |kT − lT |,ζ 2,µf ) .

Fourier and Mellin transformations of K2⊗Φ:

K̃2 =
αs CF

2π

[
K0 (λb)−K0

(
ζ P−b

N

)]
+O

(
1/ζ

2
)
.

Unrenormalized soft function in the large N limit:

K̃(b) = K1 + K̃2 =−
αs CF

4π

(
1
ε
− γE + ln

4πµ2 N2

ζ 2 P−2

)
.

Cancelation of IR divergence!
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Hard function
Hard gluon radiations:

ππ −

Subtraction to avoid the double counting of soft contribution.

Analytical expressions:

G1 = − ig2CF

2

∫ d4l
(2π)4

(x̄P/+ l/) û/
(u · l+ iε)(l2 + iε)[(x̄P+ l)2 + iε]

,

G2 = K1 .

Unrenormalized hard function:

G(b) = G1−G2 =
αs CF

4π

[
1
ε
− γE + ln

4πµ2

ζ 2(x̄P−)2 −4
]
.

Infrared finite due to the cancelation of soft divergence!

Factorization scale dependence cancels between soft and hard functions.
⇐ µ independence of the mixed logarithm to be resummed.
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RG improved evolution kernel
Renormalized soft and hard functions:

K̃(r)(µ) =−αs CF

2π
ln

µ N
ζ P−

, G(r)(µ) =
αs CF

2π

(
ln

µ

ζ P−
−2
)
.

RGE of soft and hard functions:

µ
dK̃(r)

dµ
=−αs(µ)CF

2π
, µ

dG(r)

dµ
=

αs(µ)CF

2π
.

RG improvement:

K̃(r)(µ)+G(r)(µ) = K̃(r)(µ0)+G(r)(µ1)−
∫

µ1

µ0

dµ̃

µ̃

αs(µ̃)CF

2π
,

µ0 := µ0(ζ ) =
ζ P−

N
, µ1 := µ1(ζ ) = e2

ζ P− .

Chosen to diminish the initial conditions K̃(r)(µ0) and G(r)(µ1).

Gluon radiations from the spectator quark also contribute.
Only contribute to the kernel Γ at NLL level.
⇒ Do not generate the mixed logarithm lnx ln(ζ 2P−2/k2

T).
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Solution in Mellin and impact-parameter spaces
Evolution equation in N and b spaces:

ζ
2 d

dζ 2 Φ̃(N,b,ζ 2,µf ) = Γ̃(N,b,ζ 2) Φ̃(N,b,ζ 2,µf ) .

Γ̃(N,b,ζ 2) = K̃(r)(µ)+G(r)(µ) =−
∫

µ1(ζ )

µ0(ζ )

dµ̃

µ̃

αs(µ̃)CF

2π
.

Solution:

Φ̃(N,b,ζ 2,µf ) = exp

{
−
∫

ζ 2

ζ 2
0

dζ̃ 2

ζ̃ 2

[∫
µ1(ζ̃ )

µ0(ζ̃ )

dµ̃

µ̃

αs(µ̃)CF

2π

]}

×Φ̃(N,b,ζ 2
0 ,µf ) .

RGE for µf evolution:

µf
d

dµf
Φ̃(N,b,ζ 2,µf ) =

3
2

αs(µf )CF

π
Φ̃(N,b,ζ 2,µf ) .

Combined evolution:

Φ̃(N,b,ζ 2,µf ) = exp
{
−
∫

ζ 2

ζ 2
0

dζ̃ 2

ζ̃ 2

[∫
µ1(ζ̃ )

µ0(ζ̃ )

dµ̃

µ̃

αs(µ̃)CF

2π

]

+
3
2

∫
µf

µi

dµ̃

µ̃

αs(µ̃)CF

π

}
Φ̃(N,b,ζ 2

0 ,µi) .
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Evolution of the hard kernel
Rapidity evolution:

ζ
2 d

dζ 2 H̃(N,b,ζ 2,Q2,µf ) =−Γ̃(N,b,ζ 2) H̃(N,b,ζ 2,Q2,µf ) .

Factorization scale evolution:

µf
d

dµf
H̃(N,b,ζ 2,Q2,µf ) =−

3
2

αs(µf )CF

π
H̃(N,b,ζ 2,Q2,µf ) .

Combined evolution:

H̃(N,b,ζ 2,Q2,µf ) = exp
{∫

ζ 2
1

ζ 2

dζ̃ 2

ζ̃ 2

[∫
µ1(ζ̃ )

µ0(ζ̃ )

dµ̃

µ̃

αs(µ̃)CF

2π

]

−3
2

∫
µf

t

dµ̃

µ̃

αs(µ̃)CF

π

}
H̃(N,b,ζ 2

1 ,Q
2, t) .

Depends on the final rapidity parameter ζ1 and the characteristic hard scale t.

Choices of boundary conditions:

ζ
2
0 =

(
aN1/4

P− b

)2

, ζ
2
1 = ãN1/2 .

Eliminate the logarithmic enhancements in Φ̃(N,b,ζ 2
0 ,µi) and H̃(N,b,ζ 2

1 ,Q
2, t).
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Joint resummation improved kT factorization

Factorization formula of γ
∗
π

0→ γ form factor:

F(Q2) = exp
{
−
∫

ζ 2
1

ζ 2
0

dζ̃ 2

ζ̃ 2

[∫
µ1(ζ̃ )

µ0(ζ̃ )

dµ̃

µ̃

αs(µ̃)CF

2π

]
+

3
2

∫ t

µi

dµ̃

µ̃

αs(µ̃)CF

π

}

Φ̃(N,b,ζ 2
0 ,µi)⊗ H̃(N,b,ζ 2

1 ,Q
2, t) ,

≡ Φ̃(N,b,ζ 2
1 , t)⊗ H̃(N,b,ζ 2

1 ,Q
2, t) .

Have confirmed that the expansion of the exponential factor reproduces the mixed
logarithm and the single logarithm ln(1/N) in the NLO pion transition form factor.

A complete treatment of the logarithmic enhancement for an arbitrary rapidity parameter
in the pion transition form factor.
The conventional kT factorization formula with the Sudakov and threshold resummations
is not factorization-scheme independent.
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Resummation improved wave functions
Inverse Mellin transformation:

Φ(x,b,ζ 2
1 , t) =

∫ c+i∞

c−i∞

dN
2πi

(1− x)−N
Φ̃(N,b,ζ 2

1 , t).

No Fourier transformation for the comparison of Sudakov resummation.
Factorized model for the initial condition:

Φ(x,kT ,ζ
2
0 ,µi) = φ(x,ζ 2

0 ,µi) Σ(k2
T ) , Σ(k2

T ) = 4πβ
2 exp(−β

2 k2
T ) .

Translated into the Mellin and impact-parameter spaces.
See Radyushkin’s talk for more discussion.

Three different models of φ(x,ζ 2
0 ,µi):

φ
I(x,ζ 2

0 ,µi) = 6x(1− x)⇒ 6
(N +1)(N +2)

,

φ
II(x,ζ 2

0 ,µi) = 1 ⇒ 1
N
,

φ
III(x,ζ 2

0 ,µi) = 6x(1− x)
[
1+a2 C3/2

2 (2x−1)
]

⇒ 6
(N +1)(N +2)

[
1+6a2

(N−1)(N−2)
(N +3)(N +4)

]
.

Can include the higher-order Gegenbauer moments, but (Agaev et al, 2011; Kroll, 2011.)
I The contributions from higher moments suppressed by the soft corrections.
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Joint Resummation improved wave functions
Inverse Mellin transformation with both frozen and running αs.

Analytical parametrization of αs (Solovtsov and Shirkov, 1999):

αs(µ) =
4π

β0

[
1

ln(µ2/Λ2
QCD)

−
Λ2

QCD

µ2−Λ2
QCD

]
.

Resummation effect in pion wave function Φ(x,b,ζ 2
1 ,µi):

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

x

Φ
ΠI H

x,
b

,Ζ
12 ,
Μ

iL

solid: initial condition φ
I(x,ζ 2

0 ,µi);

(blue) dashed: b =
2 ã

aP−
for a frozen

αs = 0.3 (running αs);

(blue) dotted: b =
4 ã

aP−
for a frozen

αs = 0.3 (running αs).

I Stronger suppression of the small x region compared to the moderate x region.
I The suppression strengthens with the transverse separation b at a given x.
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Comparison of Joint and Sudakov resummations

Joint vs Sudakov resummation:

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

b HGeV-1
L

Φ
ΠI
Hx

,b
,Ζ

12 ,
Μ

iL

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

b HGeV-1
L

Φ
ΠI
Hx

,b
,Ζ

12 ,
Μ

iL

Left: Sudakov resummation, solid, dashed, and dotted curves for Q2 = 5 GeV2, 10 GeV2, and 40
GeV2 at x = 0.2. Right: The same for the joint resummation.

Large b region suppressed in both cases, but stronger with the joint resummation.

Different phenomenological consequences with the two resummation techniques.
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γ
∗
π

0→ γ form factor
Transition matrix element:

〈γ(P′,ε)|jem
µ (q)|π0(P)〉= ig2

em εµναβ ε
∗ν Pα P′β F(Q2) .

Different approaches to compute the pion form factor:
I Direct approaches: Collinear (kT ) factorization formulae.
I Indirect approaches: (Light-cone) QCD Sum rules.

Status of experimental measurements:

Q2 (GeV2)

Q
  2 |F

(Q
2 )

| (
G

eV
)

0.2

0.25

0.3

0.35

0

0.05

0.1

0.15

0 10 20 30 40

BaBar

CLEO
CELLO
Belle

fit(A)

fit(A)

fit(B)

Scaling violation?

Shape of pion wave function?

The onset of QCD factorization?
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Some popular explanations:
Non-vanishing pion wave function at the end points (Radyushkin, 2009; Polyakov, 2009).

F(Q2) =

√
2

3

∫ 1

0

ϕπ (x)
xQ2


1− exp

(
− xQ2

2x̄σ

)

︸ ︷︷ ︸


 .

⇑
from kT dependence of pion wave function

Large soft (Feynman) corrections at moderate Q2 (Agaev, Braun, Offen, Porkert, 2011).
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FIG. 9: The pion transition form factor for the three models of
the pion DA specified in the text. The experimental data are
from [1] (full circles) and [9] (open triangles).

[14, 20], the result for the form factor at Q2 = 5 GeV2

is increased by ∼ 11% if M2 is changed from 0.7 to
1.5 GeV2. Another reason is that in [14, 20, 22] the twist-
6 correction is not included. The size of this correction
depends strongly on the Borel parameter. For our choice
M2 ∼ 1.5±0.5 GeV2 the twist-6 term proves to be small:
factor three smaller that the twist-4 correction (see be-
low), which is gratifying as it signals convergence of the
OPE. In contrast, at M2 = 0.7 GeV2 the twist-6 correc-
tion is almost of the same size as twist 4 and has opposite
sign. Hence it must be included. In both cases (increas-
ing the Borel parameter and/or including the twist-6 cor-
rection) the net effect is the increase of the form factor by

èè
èè
èèè

èèè
è

è
è
è

è

è

è

óó
ó
óó
ó
óó

ó
ó
ó
ó

ó

0 10 20 30 40
0.00

0.05

0.10

0.15
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Q2

Q2Fπ0γ∗γ(Q2)

soft

hard

soft+hard

FIG. 10: Contributions to the π0γ∗γ form factor from large
(“hard”) and small (“soft”) invariant masses in the dispersion
representation, cf. Eq. (53), for model I (solid curves) and
model III (dash-dotted curves). The experimental data are
from [1] (full circles) and [9] (open triangles).

5-10% in the CLEO range which has to be compensated
by a smaller value of the second Gegenbauer moment.

The error band indicated by thickness of the curves
in Fig. 9 has to be taken with caution. A weak scale
dependence of our results is largely due to strong can-
cellations of the NLO radiative corrections between the
contributions of the asymptotic DA and higher Gegen-
bauer polynomials and may not be representative for the
size of NNLO corrections which are only known in the
CS factorization scheme, see [33] for a detailed discus-
sion of the related ambiguities. Also the uncertainty in
the twist-4 contribution is not reduced to the δ2π param-
eter: Using an alternative, renormalon model [71] of the
twist-4 pion DA generally produces somewhat larger cor-
rections. We have checked that the difference is not very
significant, however, and does not affect any of our con-
clusions. Hence we do not show the corresponding re-
sults.

The “hard” and “soft” contributions to the π0γ∗γ form
factor as defined in Eq. (53) are shown separately for
model I (solid curves) and model III (dash-dotted curves)
in Fig. 10. Asymptotically, for Q2 → ∞, the soft con-
tribution is power-suppressed compared to the hard one,
∼ s0/Q

2. This suppression sets in for very large values of
Q2, however, especially if the pion DA is enhanced close
to the end points. E.g. for our model III the soft con-
tribution still accounts for ca. 25% of the form factor at
Q2 = 30 GeV2 (for the separation scale s0 = 1.5 GeV2).
This means that a purely perturbative leading twist QCD
calculation of the transition form factor for one real pho-
ton in collinear factorization should not be expected to
have high accuracy. A lattice calculation of the transi-
tion πργ∗ form factor at Q2 ∼ 2 − 5 GeV2 would help to
estimate the contribution of the resonance region more
reliably.

Finally, in Fig. 11 we show the higher-twist contribu-
tions. The twist-4 correction is negative and the twist-6
one is positive. It turns out that the twist-6 contribu-

The “hard” and “soft” contributions
to the π

0
γ
∗
γ form factor for model

I (solid curves) and model III (dash-
dotted curves). The experimental
data are from BaBar (full circles) and
CLEO (open triangles).

Threshold resummation generates power-like [x(1− x)]c(Q
2) distribution (Li and Mishima

2009). c(Q2) is around 1 for low Q2, but small for high Q2.
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Factorization formula of pion form factor
kT factorization with the conventional resummation (Nandi and Li, 2007):

F(Q2) =

√
2 fπ
3

∫ 1

0
dx
∫

∞

0
bdb Φ(x,b, t) e−S(x,b,Q,t) St(x,Q)

×K0(
√

xQb)
[

1− αs(t)CF

4π

(
3ln

t2 b
2
√

xQ
+ γE +2lnx+3− π2

3

)]
.

The rapidity parameter fixed as ζ
2 = 2.

kT factorization with the joint resummation:

F(Q2) =

√
2 fπ
3

∫ 1

0
dx
∫

∞

0
bdbΦ(x,b,ζ 2

1 , t)K0(
√

xQb)

×
[

1− αs(t)CF

4π

(
3ln

t2 b
2
√

xQ
+ ln2+2

)]
.

Choices of the factorization scale t:
I t2 =

√
xQ/b to eliminate the remaining logarithm.

I Typical scale of the hard scattering t = max(
√

xQ,1/b) [default choice].
I Two scenarios do not generate practical difference in our formalism.
⇒ The joint resummation has suppressed the contribution from the
nonperturbative region effectively.
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Confronting the data I
Results with the asymptotic pion wave function:
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The experimental data from
CLEO (dots), BaBar (trian-
gles), and Belle (squares).

The dashed and dotted (dot-
dashed and solid) curves
from LO and NLO predic-
tions with the conventional
resummations (joint resum-
mation).

The predicted Q2F(Q2) with the conventional resummations saturates as Q2 > 5GeV2.
Can accommodate the Belle data except the first two bins.

Fail to describe the BaBar data.
The joint-resummation effect decreases the predictions in the conventional approach.

Due to the stronger suppression at small x from joint resummation.
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Confronting the data II
Results with the flat pion wave function:
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The experimental data from
CLEO (dots), BaBar (trian-
gles), and Belle (squares).

The dashed and dotted (dot-
dashed and solid) curves
from LO and NLO predic-
tions with the conventional
resummations (joint resum-
mation).

The form factor Q2F(Q2) grows steadily with Q2 in both resummation formalisms.

Tree-level kT factorization formula⇒ Q2F(Q2)∼ ln(Q2/k2
T).

The NLO curves from the conventional resummations and from the joint resummation

turn out to be similar.
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Confronting the data III

Results with the non-asymptotic pion wave function:
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The experimental data from
CLEO (dots), BaBar (trian-
gles), and Belle (squares).

The second Gegenbauer mo-
ment: a2 = 0.05.

Pion wave function with a small a2 can describe the data better.

The Chernyak-Zhitnitsky model or the Bakulev-Mikhailov-Stefanis model, which

involve a large a2, overshoot the data in our formalism.
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Conclusion and outlook

Constructed an evolution equation to resum the mixed logarithm lnx ln(ζ 2/k2
T).

The moderate x and small b regions more highlighted with joint resummation.

The predictions for the pion transition form factor confronted with the data.
A small a2 favored in joint-resummation improved kT factorization.

More efforts are in demand on theory side:

I Better control on the pion wave function.
I Include the soft contribution in kT factorization.

Have checked that our joint-resummation formalism can be extend to kT factorization of
pion e.m. form factor.

I The same ζ
2
0 diminishes the large logarithms in the amplitudes of effective

diagrams at NLO.
I Can find ζ

2
1 and ζ

2
2 to eliminate the large logarithms in the hard kernel.
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