
Overview of TMD Factorization and Evolution
(corrected)

John Collins (Penn State)

• TMD factorization/evolution

• How should non-perturbative part of evolution kernel behave?

• Tool for diagnosis and comparison of formalisms/fits:

– Introduce scheme-independent L(bT) function
– Examples

QCD Evolution workshop, May 12, 2014



Basic parton model inspiration: Case of Drell-Yan at qT � Q
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• Lorentz contracted high-energy hadrons

• qT(leptons) =
∑

kT(quarks)

• Use parton distribution in x and kT

• But parton model needs to be substantially modified in QCD



Symptom of the QCD complications: qT distribution broadens
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Q = 91 GeV

Q: 7–18 GeV,
√
s = 38.8 GeV Q = mZ,

√
s = 1800 GeV

(Plot of E dσ/d
3
q) (Plot of dσ/dqT: has qT factor.)

(Adapted from Landry et al., PRD 67,073016 (2003))



Steps to derive factorization,
given typical structure of graphs + momentum regions:

PB

PA Fourier trans. of 〈p|ψ̄ WL ψ|p〉

• Approximations at leading power

• + Ward identities =⇒ Wilson lines for “misattached” glue (Feynman gauge)

• + contour deformation + “unitarity cancellation”, etc

• =⇒ initial-state Wilson lines for DY

• Factorization of contributions of different regions, including central/soft

• Reorganize: Construct subtractions, define TMD pdfs, with glue restricted to
correct hemisphere, etc. Soft factors somewhere.

=⇒ Broadening from pert. and non-pert. glue into increasing rapidity range.



Full TMD factorization (modernized Collins-Soper form)

dσ

d4q dΩ
=

2

s

∑
j

dσ̂j̄(Q,µ)

dΩ

∫
eiqT·bT f̃j/A(xA, bT; ζA, µ) f̃̄/B(xB, bT; ζB, µ) d2bT

+ poln. terms + high-qT term + power-suppressed

where can set ζA = ζB = Q2, µ = Q.

Evolution:
∂ ln f̃f/H(x, bT; ζ;µ)

∂ ln
√
ζ

= K̃(bT;µ)

dK̃

d lnµ
= −γK(αs(µ))

d ln f̃f/H(x, bT; ζ;µ)

d lnµ
= γf(αs(µ); 1)− 1

2
γK(αs(µ)) ln

ζ

µ2

Small-bT:

f̃f/H(x, bT; ζ;µ) =
∑
j

∫ 1+

x−
C̃f/j(x/x̂, bT; ζ, µ, αs(µ)) fj/H(x̂;µ)

dx̂

x̂
+ O[(mbT)p]



Key to predictivity: Universality etc derived from QCD

• All process use the same TMD pdfs (and fragmentation functions)

• Except:

– Scale dependence: Use evolution
– Reversed Wilson lines in TMD pdfs between DY and SIDIS
– Hence sign reversal for Sivers function etc

• Same evolution kernel K̃ (color triplet) in all cases, including all polarized cases
(Sivers, Boer-Mulders, etc)

• But breakdown of TMD factorization in HH → HH +X

• Non-perturbative information:

– Ordinary pdfs
– Large bT TMD pdfs: “intrinsic transverse momentum”
– Large bT of evolution kernel K̃(bT, µ): recoil against radiation per unit rapidity



Formalisms used: They don’t all appear compatible

Parton model: QCD complications ignored

Original CSS: non-light-like axial gauge; soft factor

Ji–Ma–Yuan: non-light-like Wilson lines; soft factor; parameter ρ

New CSS: clean up, Wilson lines mostly light-like;

absorb (square roots of) soft factor in TMD pdfs

Becher–Neubert: SCET, but without actual finite TMD pdfs

Echevarŕıa–Idilbi–Scimemi: SCET

Mantry–Petriello: SCET

Boer, Sun-Yuan: Approximations on CSS

Disagreement on non-perturbative contribution to evolution (K̃(bT) at large bT), or
even whether it exists.



Geography of evolution of cross section
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Evolution of cross section (à la CSS)
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dσ

d4q
= norm.×

∫
eiqT·bTW̃ (bT, s, xA, xB) d2bT

∂W̃

∂ lnQ2

∣∣∣∣∣
fixed xA, xB

=
∂W̃

∂ ln s

∣∣∣∣∣
fixed xA, xB

=
(
K̃(bT, µ) +G(Q,µ)

)
W̃

• Universal K̃

• Perturbative: G, K̃ at small bT, with RG

• Non-perturbative K̃ at large bT



Different results for evolution at large bT

With CSS prescription: K̃(bT, µ) = K̃(b∗, µ)− gK(bT; bmax) fits at Q up to mZ give:

gK(bT) =
0.68+0.01

−0.02

2
b2T (BLNY, bmax = 0.5 GeV−1 = 0.1 fm)

gK(bT) =
0.158± 0.023

2
b2T (KN, bmax = 1.5 GeV−1 = 0.3 fm)

But this implies wrong behavior at large bT, smaller Q:

With this parameterization

W̃ = . . . e−b
2
[coeff(x)+const ln(Q

2
/Q

2
0)]
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Tool to compare different methods: The L function
(JCC & Rogers, in preparation)

• Shape change of transverse momentum distribution comes only from
bT-dependence of K̃

• So define scheme independent

L(bT) = − ∂

∂ ln b2T

∂

∂ lnQ2 ln W̃ (bT, Q, xA, xB)
CSS
= − ∂

∂ ln b2T
K̃(bT, µ)

• QCD predicts it is

– independent of Q, xA, xB
– independent of light-quark flavor
– RG invariant
– perturbatively calculable at small bT

– non-perturbative at large bT



Relation of L function to properties of cross section

If L were constant, then

W̃ (bT, Q) = normalization× W̃ (bT, Q0)×
(

1

b2T

)L ln(Q
2
/Q

2
0)

L is positive: W̃ decreases at large bT and increases at small bT when Q increases.

Of course, L is not actually constant.



Comparing different results using the L function
(Preliminary)
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π
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Implications

• Important to determine actual non-perturbative part of TMD evolution (i.e.,
K̃(bT) at large bT).

• Older fits (e.g., KN) OK for bT up to around 3 GeV−1 = 0.6 fm.

• But their extrapolation to larger bT makes K̃(bT) too large.

• Use L(bT) to diagnose the issues: It’s a universal scheme independent function in
QCD.

• What does this mean physically? . . .



Physical meaning of non-perturbative K̃(bT)

• Overall principle: Emission of glue is uniform in rapidity

• Old idea/intuition:

– In one unit of rapidity emit Gaussian (??) distribution of kT:

e−k
2
T/k

2
0 T

1

πk2
0 T

– Exponential convolution =⇒ W̃ (bT, Q) = W̃ (bT, Q0)e−b
2
T ln(Q

2
/Q

2
0)k

2
0 T/4

– Gives K̃(bT)NP = −b2Tk
2
0 T/4

• New proposal

– Per unit rapidity: a probability of no emission, and a probability of emitting a
particle (or more)

– So

K̃(bT)NP = FT of c
[
−δ(2)(kT) + e−k

2
T/k

2
0 T/(πk2

0 T)
]

= c
[
−1 + e−b

2
Tk

2
0 T/4

]
– ¿Change to exponential at large bT instead of Gaussian? (Normal for Euclidean

correlation function)


