# Overview of TMD Factorization and Evolution (corrected) 

John Collins (Penn State)

- TMD factorization/evolution
- How should non-perturbative part of evolution kernel behave?
- Tool for diagnosis and comparison of formalisms/fits:
- Introduce scheme-independent $L\left(b_{T}\right)$ function
- Examples


## Basic parton model inspiration: Case of Drell-Yan at $q_{\boldsymbol{T}} \ll Q$



- Lorentz contracted high-energy hadrons
- $\boldsymbol{q}_{\mathrm{T}}$ (leptons) $=\sum \boldsymbol{k}_{\mathrm{T}}$ (quarks)
- Use parton distribution in $x$ and $\boldsymbol{k}_{\mathrm{T}}$
- But parton model needs to be substantially modified in QCD


## Symptom of the QCD complications: $q_{\mathrm{T}}$ distribution broadens


(Adapted from Landry et al., PRD 67,073016 (2003))

## Steps to derive factorization, given typical structure of graphs + momentum regions:



Fourier trans. of $\langle p| \bar{\psi} \mathrm{W} L \psi|p\rangle$

- Approximations at leading power
-     + Ward identities $\Longrightarrow$ Wilson lines for "misattached" glue (Feynman gauge)
-     + contour deformation + "unitarity cancellation", etc
- $\Longrightarrow$ initial-state Wilson lines for DY
- Factorization of contributions of different regions, including central/soft
- Reorganize: Construct subtractions, define TMD pdfs, with glue restricted to correct hemisphere, etc. Soft factors somewhere.
$\Longrightarrow$ Broadening from pert. and non-pert. glue into increasing rapidity range.


## Full TMD factorization (modernized Collins-Soper form)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q \mathrm{~d} \Omega}= & \frac{2}{s} \sum_{j} \frac{\mathrm{~d} \hat{\sigma}_{j \bar{\jmath}}(Q, \mu)}{\mathrm{d} \Omega} \int e^{i \boldsymbol{q}_{\top} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / A}\left(x_{A}, \boldsymbol{b}_{\mathrm{T}} ; \zeta_{A}, \mu\right) \tilde{f}_{\bar{J} / B}\left(x_{B}, \boldsymbol{b}_{\mathrm{T}} ; \zeta_{B}, \mu\right) \mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}} \\
& + \text { poln. terms }+ \text { high- } q_{\mathrm{T}} \text { term }+ \text { power-suppressed }
\end{aligned}
$$

where can set $\zeta_{A}=\zeta_{B}=Q^{2}, \mu=Q$.
Evolution:

$$
\begin{gathered}
\frac{\partial \ln \tilde{f}_{f / H}\left(x, b_{\mathrm{T}} ; \zeta ; \mu\right)}{\partial \ln \sqrt{\zeta}}=\tilde{K}\left(b_{\mathrm{T}} ; \mu\right) \\
\frac{\mathrm{d} \tilde{K}}{\mathrm{~d} \ln \mu}=-\gamma_{K}\left(\alpha_{s}(\mu)\right) \\
\frac{\mathrm{d} \ln \tilde{f}_{f / H}\left(x, b_{\mathrm{T}} ; \zeta ; \mu\right)}{\mathrm{d} \ln \mu}=\gamma_{f}\left(\alpha_{s}(\mu) ; 1\right)-\frac{1}{2} \gamma_{K}\left(\alpha_{s}(\mu)\right) \ln \frac{\zeta}{\mu^{2}}
\end{gathered}
$$

Small- $b_{\mathrm{T}}$ :

$$
\tilde{f}_{f / H}\left(x, b_{\mathrm{T}} ; \zeta ; \mu\right)=\sum_{j} \int_{x-}^{1+} \tilde{C}_{f / j}\left(x / \hat{x}, b_{\mathrm{T}} ; \zeta, \mu, \alpha_{s}(\mu)\right) f_{j / H}(\hat{x} ; \mu) \frac{\mathrm{d} \hat{x}}{\hat{x}}+O\left[\left(m b_{\mathrm{T}}\right)^{p}\right]
$$

## Key to predictivity: Universality etc derived from QCD

- All process use the same TMD pdfs (and fragmentation functions)
- Except:
- Scale dependence: Use evolution
- Reversed Wilson lines in TMD pdfs between DY and SIDIS
- Hence sign reversal for Sivers function etc
- Same evolution kernel $\tilde{K}$ (color triplet) in all cases, including all polarized cases (Sivers, Boer-Mulders, etc)
- But breakdown of TMD factorization in $H H \rightarrow H H+X$
- Non-perturbative information:
- Ordinary pdfs
- Large $b_{\mathrm{T}}$ TMD pdfs: "intrinsic transverse momentum"
- Large $b_{\mathrm{T}}$ of evolution kernel $\tilde{K}\left(b_{\mathrm{T}}, \mu\right)$ : recoil against radiation per unit rapidity


## Formalisms used: They don't all appear compatible

| Parton model: | QCD complications ignored |
| :--- | :--- |
| Original CSS: | non-light-like axial gauge; soft factor |
| Ji-Ma-Yuan: | non-light-like Wilson lines; soft factor; parameter $\rho$ |
| New CSS: | clean up, Wilson lines mostly light-like; |
|  | absorb (square roots of) soft factor in TMD pdfs |
| Becher-Neubert: | SCET, but without actual finite TMD pdfs |
| Echevarría-Idilbi-Scimemi: | SCET |
| Mantry-Petriello: | SCET |
| Boer, Sun-Yuan: | Approximations on CSS |

Disagreement on non-perturbative contribution to evolution $\left(\tilde{K}\left(b_{\mathrm{T}}\right)\right.$ at large $\left.b_{\mathrm{T}}\right)$, or even whether it exists.

## Geography of evolution of cross section


$Q: 7-18 \mathrm{GeV}, \sqrt{s}=38.8 \mathrm{GeV}$
$Q=m_{Z}, \sqrt{s}=1800 \mathrm{GeV}$
(Adapted from Landry et al., PRD 67,073016 (2003), Konychev \& Nadolsky, PLB 633, 710 (2006))

## Evolution of cross section (à la CSS)




$$
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q}=\text { norm. } \times \int e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \widetilde{W}\left(b_{\mathrm{T}}, s, x_{A}, x_{B}\right) \mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}
$$

$$
\left.\frac{\partial \widetilde{W}}{\partial \ln Q^{2}}\right|_{\text {fixed } x_{A}, x_{B}}=\left.\frac{\partial \widetilde{W}}{\partial \ln s}\right|_{\text {fixed } x_{A}, x_{B}}=\left(\tilde{K}\left(b_{\mathrm{T}}, \mu\right)+G(Q, \mu)\right) \widetilde{W}
$$

- Universal $\tilde{K}$
- Perturbative: $G, \tilde{K}$ at small $b_{\mathrm{T}}$, with RG
- Non-perturbative $\tilde{K}$ at large $b_{\mathrm{T}}$


## Different results for evolution at large $b_{\boldsymbol{T}}$

With CSS prescription: $\tilde{K}\left(b_{\mathrm{T}}, \mu\right)=\tilde{K}\left(b_{*}, \mu\right)-g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right)$ fits at $Q$ up to $m_{Z}$ give:

$$
\begin{array}{ll}
g_{K}\left(b_{\mathrm{T}}\right)=\frac{0.68_{-0.01}^{+0.01}}{2} b_{\mathrm{T}}^{2} & \left(\text { BLNY, } b_{\max }=0.5 \mathrm{GeV}^{-1}=0.1 \mathrm{fm}\right) \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{0.158 \pm 0.023}{2} b_{\top}^{2} & \left(\mathrm{KN}, b_{\max }=1.5 \mathrm{GeV}^{-1}=0.3 \mathrm{fm}\right)
\end{array}
$$

But this implies wrong behavior at large $b_{\mathrm{T}}$, smaller $Q$ :

With this parameterization

$$
\tilde{W}=\ldots e^{-b^{2}\left[\text { coeff }(x)+\text { const } \ln \left(Q^{2} / Q_{0}^{2}\right)\right]}
$$



Blue: BLNY, Red: KN
(Sun \& Yuan, PRD 88, 114012 (2013))

## Tool to compare different methods: The $L$ function

(JCC \& Rogers, in preparation)

- Shape change of transverse momentum distribution comes only from $b_{\mathrm{T}}$-dependence of $\tilde{K}$
- So define scheme independent

$$
L\left(b_{\mathrm{T}}\right)=-\frac{\partial}{\partial \ln b_{\mathrm{T}}^{2}} \frac{\partial}{\partial \ln Q^{2}} \ln \tilde{W}\left(b_{\mathrm{T}}, Q, x_{A}, x_{B}\right) \stackrel{\mathrm{CSS}}{=}-\frac{\partial}{\partial \ln b_{\mathrm{T}}^{2}} \tilde{K}\left(b_{\mathrm{T}}, \mu\right)
$$

- QCD predicts it is
- independent of $Q, x_{A}, x_{B}$
- independent of light-quark flavor
- RG invariant
- perturbatively calculable at small $b_{\mathrm{T}}$
- non-perturbative at large $b_{T}$


## Relation of $L$ function to properties of cross section

If $L$ were constant, then

$$
\tilde{W}\left(b_{\mathrm{T}}, Q\right)=\text { normalization } \times \tilde{W}\left(b_{\mathrm{T}}, Q_{0}\right) \times\left(\frac{1}{b_{\mathrm{T}}^{2}}\right)^{L \ln \left(Q^{2} / Q_{0}^{2}\right)}
$$

$L$ is positive: $\tilde{W}$ decreases at large $b_{\mathrm{T}}$ and increases at small $b_{\mathrm{T}}$ when $Q$ increases.
Of course, $L$ is not actually constant.

## Comparing different results using the $L$ function

(Preliminary)


| $Q$ | Typical $b_{\mathrm{T}}$ |
| :--- | :--- |
| 2 GeV | $3 \mathrm{GeV}^{-1}$ |

$10 \mathrm{GeV} \quad 1.2 \mathrm{GeV}^{-1}$
$m_{Z} \quad 0.5 \mathrm{GeV}^{-1}$

$S Y=$ Sun \& Yuan (PRD 88, 114012 (2013)):

$$
L_{\mathrm{SY}}=C_{F} \frac{\alpha_{s}(Q)}{\pi}
$$

Depends on $Q$ : contrary to QCD

## Implications

- Important to determine actual non-perturbative part of TMD evolution (i.e., $\tilde{K}\left(b_{\mathrm{T}}\right)$ at large $\left.b_{\mathrm{T}}\right)$.
- Older fits (e.g., KN) OK for $b_{\mathrm{T}}$ up to around $3 \mathrm{GeV}^{-1}=0.6 \mathrm{fm}$.
- But their extrapolation to larger $b_{\mathrm{T}}$ makes $\tilde{K}\left(b_{\mathrm{T}}\right)$ too large.
- Use $L\left(b_{\mathrm{T}}\right)$ to diagnose the issues: It's a universal scheme independent function in QCD.
- What does this mean physically? . . .


## Physical meaning of non-perturbative $\tilde{K}\left(b_{\mathbf{T}}\right)$

- Overall principle: Emission of glue is uniform in rapidity
- Old idea/intuition:
- In one unit of rapidity emit Gaussian (??) distribution of $k_{\mathrm{T}}$ :

$$
e^{-k_{T}^{2} / k_{0}^{2}} \frac{1}{\pi k_{0}^{2} T}
$$

- Exponential convolution $\Longrightarrow \tilde{W}\left(b_{\mathrm{T}}, Q\right)=\tilde{W}\left(b_{\mathrm{T}}, Q_{0}\right) e^{-b_{\mathrm{T}}^{2} \ln \left(Q^{2} / Q_{0}^{2}\right) k_{0}^{2} / 4}$
- Gives $\tilde{K}\left(b_{\mathrm{T}}\right)_{\mathrm{NP}}=-b_{T}^{2} k_{0}^{2} / 4$
- New proposal
- Per unit rapidity: a probability of no emission, and a probability of emitting a particle (or more)
- So

$$
\tilde{K}\left(b_{\mathrm{T}}\right)_{\mathrm{NP}}=\mathrm{FT} \text { of } c\left[-\delta^{(2)}\left(\boldsymbol{k}_{\mathrm{T}}\right)+e^{-k_{\mathrm{T}}^{2} / k_{0}^{2} \mathrm{~T}} /\left(\pi k_{0}^{2}\right)\right]=c\left[-1+e^{-b_{\mathrm{T}}^{2} k_{\mathrm{T}}^{2} / 4}\right]
$$

- ¿Change to exponential at large $b_{\mathrm{T}}$ instead of Gaussian? (Normal for Euclidean correlation function)

