Overview of TMD Factorization and Evolution
(corrected)

John Collins (Penn State)

e TMD factorization/evolution
e How should non-perturbative part of evolution kernel behave?

e Tool for diagnosis and comparison of formalisms/fits:

— Introduce scheme-independent L(bt) function
— Examples

QCD Evolution workshop, May 12, 2014



Basic parton model inspiration: Case of Drell-Yan at ¢7 < )

Pg

Lorentz contracted high-energy hadrons
q(leptons) = > kt(quarks)
Use parton distribution in z and kt

But parton model needs to be substantially modified in QCD



Symptom of the QCD complications: ¢t distribution broadens
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Steps to derive factorization,
given typical structure of graphs + momentum regions:

Pp

P Fourier trans. of (p|y) WL |p)

e Approximations at leading power

e + Ward identities = Wilson lines for “misattached” glue (Feynman gauge)
e + contour deformation + “unitarity cancellation”, etc

e — nitial-state Wilson lines for DY

e Factorization of contributions of different regions, including central /soft

e Reorganize: Construct subtractions, define TMD pdfs, with glue restricted to
correct hemisphere, etc. Soft factors somewhere.

—> Broadening from pert. and non-pert. glue into increasing rapidity range.



Full TMD factorization (modernized Collins-Soper
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Key to predictivity: Universality etc derived from QCD

e All process use the same TMD pdfs (and fragmentation functions)

e Except:

— Scale dependence: Use evolution
— Reversed Wilson lines in TMD pdfs between DY and SIDIS
— Hence sign reversal for Sivers function etc

e Same evolution kernel K (color triplet) in all cases, including all polarized cases
(Sivers, Boer-Mulders, etc)

e But breakdown of TMD factorization in HH — HH + X

e Non-perturbative information:

— Ordinary pdfs
— Large by TMD pdfs: "intrinsic transverse momentum”
— Large bt of evolution kernel K (b, u): recoil against radiation per unit rapidity



Formalisms used: They don’t all appear compatible

Parton model:
Original CSS:
Ji-Ma—-Yuan:
New CSS:

Becher—Neubert:
Echevarria—Idilbi-Scimemi:
Mantry—Petriello:

Boer, Sun-Yuan:

QCD complications ignored

non-light-like axial gauge; soft factor

non-light-like Wilson lines; soft factor; parameter p
clean up, Wilson lines mostly light-like;

absorb (square roots of) soft factor in TMD pdfs
SCET, but without actual finite TMD pdfs

SCET

SCET

Approximations on CSS

~

Disagreement on non-perturbative contribution to evolution (K (by) at large bt), or

even whether It exists.



Geography of evolution of cross section
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Evolution of cross section (a la CSS)
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o Universal K
e Perturbative: G, K at small by, with RG

e Non-perturbative K at large bt



Different results for evolution at large bt

~

With CSS prescription: K (b, i) = K (b,, 1t) — g5 (b1; buas) fits at Q up to m give:

0.68+001 »
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0.158 -+ 0.023 _
g (br) = > by (KN, byax = 1.5GeV ™! = 0.3 fm)

But this implies wrong behavior at large b, smaller Q):
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(Sun & Yuan, PRD 88, 114012 (2013))



Tool to compare different methods: The L function
(JCC & Rogers, in preparation)

e Shape change of transverse momentum distribution comes only from
br-dependence of K

e So define scheme independent

9, 9, ~ CSS 0 -
— InW(br,Q, x4, x5) = — K (b,
dmomor " Ur @ Ta.7s) ompe s i)

L(br) =

e QCD predicts it is

— independent of ), x4, 5

— independent of light-quark flavor

— RG invariant

— perturbatively calculable at small bt
— non-perturbative at large bt



Relation of L function to properties of cross section

If I. were constant, then
. . 1\ LIn(Q7/Qp)
W (bt, Q) = normalization x W (bt, Q) X (b—z)
2

L is positive: W decreases at large bt and increases at small b1 when () increases.

Of course, L is not actually constant.



Comparing different results using the L function
(Preliminary)
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Implications

e Important to determine actual non-perturbative part of TMD evolution (i.e.,

~

K (by) at large bt).
e Older fits (e.g., KN) OK for by up to around 3 GeV ™' = 0.6 fm.
e But their extrapolation to larger by makes K (bt) too large.
e Use L(bt) to diagnose the issues: It's a universal scheme independent function in

QCD.

e \What does this mean physically? . ..



Physical meaning of non-perturbative K (bt)

e Overall principle:  Emission of glue is uniform in rapidity

e Old idea/intuition:

— In one unit of rapidity emit Gaussian (?7?) distribution of kt:
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— Exponential convolution = W (b1,Q) = W(bT,QO)e_bT In(Q"/Qp)koT/4
— Gives K(bT)NP = —b'2|']€(2)'|'/4

e New proposal

— Per unit rapidity: a probability of no emission, and a probability of emitting a
particle (or more)

- So
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— ;Change to exponential at large bt instead of Gaussian? (Normal for Euclidean
correlation function)



